Edit this essay
only $12.90/page

Human-Wildlife Conflict worldwide Essay Sample

Human-Wildlife Conflict worldwide Pages
Pages: Word count: Rewriting Possibility: % ()

In this context, the International Fund for Animal Welfare (IFAW) implemented an elephant habitat conservation and local community development project aimed at enhancing the coexistence of indigenous people and wildlife. The project entailed micro-credit loans, environmental education, dissemination of alternative farming techniques, human safety awareness and habitat conservation. At completion of the pilot phase, the loans had been paid back, indigenous people had shifted to alternative farming and reduced the pressure on forests, while better tolerating elephants’ damage (Zang and W 2 9 , 9 Tigers and Asian elephants are a principal source of conflict in much of Asia (Nyhus & Tilson, 9 , 2 9 2 populations.

Tiger and Asian elephant conflict in India [Tigers (Panthera tigris), endangered; Asian elephants (Elephas maximus), endangered] In the Southern Indian state of Karnatake, the Bhadra Tiger Reserve hosts a large number of 29 99 . Data collection and surveys performed in $ ))% ))) level of economic impact due to HWC. The overall annual loss due to large feline (tigers and leopards) depredation is $ # & C & ” 2 ? %C 7 detail is that although large carnivores had a considerable negative impact on the cattle population, the villages over compensated the loss with purchases. Besides, elephant damage to crops C +( 9 &2 , & ? 9 C al household income in the region + . 29 , 9 7 & & $ $ =& & H6 +9 $2 9 , / the extent, distribution and impact of the human-tiger conflict in Sumatra, by means of analysing data 9& Tiger conflict in Sumatra [Sumatran tiger (Panthera tigris sumatrae), critically endangered] Nyphus and Tilson’s study revealed that the tiger conflict is more common in intermediate disturbance zones such as isolated human settlements surrounded by extensive tiger habitat than in high and low disturbance zones.

In fact, as the authors underline, the overlap between tigers and humans is less common in logged, degraded and heavily used areas, or in protected forests such as in the Way Kambas National Park, where tigers are unable to leave the forest and human access is discouraged by natural barriers and the presence of forestry guards. However, this lack of conflict seems to be an exception in Sumatra, as numerous reports of attacks by tigers have been recorded around different national parks where a spatial separation is not assured by natural barriers: Gunung Leuser, Bukit Barisan Selatan, Berbak, Kerinci, and Bukit Tigapulu + =& H 6 2 9 ,6 9 same authors conclude that priority should be given to large carnivore conflict around reserve borders and in buffer zones around protected zones that are playing an increasingly important role in the conservation of species like tigers. The selection of cases from Asia will be concluded by the following case study, which provides well-defined figures on the economic losses faced by rural populations in Northern India.

It has been included in the collection because it gives evidence in support of the opinion that losses can vary according to the type of crop cultivated and the distance from a protected area. % Wildlife conflict in India [Tigers (Panthera tigris), endangered; Leopard (Panthera pardus), endangered] In ! :5 2 * ” 6 : $ 9 ”9 ‘2 2 $ ‘ 2 6 & quantifies the cost of living in close proximity to a nature reserve and estimates the extent of crop and livestock losses, given that agriculture and livestock keeping are the main economic activities. Many species of wild herbivores are blamed for crop raiding in this region: Nilgai (Boselaphus tragocamelus) and wild boar (Sus scrofa, $ $ 9 C damage, while other species as sambar (Cervus unicolor), chital (Axis axis), common langur (Presbitys entellus), rhesus monkey (Macaca mulatta) and parakeets (Psittacula kremeri) accounted  for the rest. Nilgai usually raids crops in the evening and tends to favour the degraded edges of forest villages.

Wild boar instead, acts at night, while other ungulates such as sambar and chital are usually confined to forest cores. The data on ))%- ))’2 the annual crop losses varied according to the type of crop grown, in fact the annual loss for chickpeas (Cicer arietinum, 9 ‘C + , 2 / + mays, – C Zea (Brassica campestris, 9 ‘C + Triticum aestivum,%- C pearl millet (Pennisetum typhoideum,%- C 6 $ &$ $ $ & 9 8 general the depredation increased with closer proximity to the reserve. In monetary terms, the 2 2(9 ! : + ,+ J ) , : 1* 2 : 2 9 + J %’, 1* 8 &+ ” 2 ))(, * Among wild carnivores, the main livestock predators were reported to be tigers and leopards, with the former preying on large domestic animals such as cattle and buffaloes and the latter on smaller animals like goats, sheep and calves. Tigers were reported to be a major threat in villages located inside and close to the reserve, leopards instead, avoided competition with tigers and frequented areas further outside the villages.

The calculation of the economic impact was based on domestic animal prices provided by those agro-pastoralists interviewed during the survey, which revealed $ )) ))%2 & : ‘9- % 9+ J’ – ‘, 6 1* much less than crop losses and is certainly enhanced by the villagers taking their domestic animals / & + ” 2 ))(, * South America A positive correlation between distance from a protected area and level of wildlife damage has been & + ” 2 ))(, * @ &$ confirms this relationship. Wildlife conflict in Peru [Brazilian tapir (Tapirus terrestris) vulnerable] In Peru, in 7 / 3 6 $ 2 29 9 $ 6 $ -Candamo Reserve. The villagers are engaged in different activities such as slash-and-burn agriculture, fishing, hunting and logging and as a result they experience a certain level of conflict with wildlife. The principal wild herbivores responsible for the damage are the Brazilian tapir (Tapirus terrestris), tayra (Eira barbara) and capybara (Hydrochaeris hydrochaeris); less harmful, but very frequent visitors are the collared peccary (Tayassu tajacu), paca (Agouti paca) and brown agouti (Dasyprocta variegata).

Among predators ocelot (Leopardus pardalis), hawks (Accipiter spp., Leucopternis spp.), jaguars (Panthera onca) and pumas (Puma concolor) were blamed for causing most of the depredation (Naughton-Treves et al., 9 , 9 ; & ))( ; & 99 92 1* J 2 while the annual reported loss was, re & 1* 2 J 1* J ( ” “$ & and large carnivores. These figures represent only a rough calculation of the total losses, because those farmers living in remote areas suffered a consistent level of impact compared to farmers neighbouring degraded habitats. This is due to the fact that the largest animal species are often the most devastating species, as they thrive in undisturbed habitats, and encroach onto adjacent agricultural lands. However, farmers living in remote forests managed to compensate their losses with bushmeat gains. Unfortunately hunting big game in degraded habitats was not rewarding

enough as anthropogenic activities have reduced the biomass and diversity of wild animals. This demonstrates that conflict occurs at a negligible level in more degraded agro-forest habitats (Naughton-Treves et al., 9 , 9 North America Competition between humans and wolves for ungulates is an ancient struggle originating in hunter societies (Musiani et al., 9 , 9 ys continuing where livestock is raised for household and commercial income. Wolf conflict in Canada and USA ! 7$ 2 2 & + )( – ))%, + Canis lupus, 2(% 9 deaths among domestic animals, mainly cattle and to a lesser extent dogs, horses, sheep, chickens, bison, goats, geese and turkeys. In Idaho, Montana and Wyoming (USA), during a similar time + )(‘- 9 , 9 ” + (, ‘ 2 & Interestingly, in both countries there is a positive correlation between the number of domestic animals killed each year and the number of wolves eliminated by government authorities. However 1 * ” & 9 9 ” 2 (B9 + 9. et al., 9 , 9 Europe The following case demonstrates that predator problems could be greatly reduced with simple foresight and common sense such as livestock protection at grazing areas or in a predator’s habitat.

Wolf conflict in Italy Predation of domestic livestock by the wolf (Canis lupus) is a problem in some parts of the Abruzzo region in Italy, where the rural economy is characterised by small-scale farming and cattle, sheep, goats and horses are the main stock-rearing activities. Despite both wolves and bears (Ursus arctos) $ 2 ” + C, = $& ) majority of sheep and goats + ‘C, %( + ‘, ‘% + , ‘ & / # & $ ! 2 ” + C, took place when the animals were lost or drawn away from the main grazing route. Obviously, a great proportion of the losses in Abruzzo occur at pasture and pastoralists’ vulnerability is associated with their inability to keep predators away from herded animals. Little attention has been paid to the socio-economic dimension, in which the conflict happens and the amount for economic losses relative to the average family’s income is not known (Cozza et al., ))%, % Middle East The following research demonstrates that the increased food availability from agricultural production and illegal refuse dumps can disturb ecological equilibriums through maintenance of a large predator population above a habitat’s natural carrying capacity.

Golden Jackal conflict in Israel

In Israel, a third of the Golan grassland plateau is managed as pasture for grazing cattle and it is inhabited by farmers who produce cereals, fruits, turkeys, hens and diary products. The farmers – )C $ & 5 ” + Canis aureus) predation. The ec )) $ $ 1* J 29 + 9 9 L -6 2 )) , 6 & & $ & themselves, through the illegal dumping of domestic animal carcasses, a primary source of food for the jackals, whose population has in turn thrived and augmented. As a matter of fact, in the decade )'(- )((2 $ 5″ & 9 B 8 B8 and the current amount of meat dumped by farms is calculated $ & (B Km predators. This means that the conflict is expected to escalate if illegal waste dumping is not prohibited and the predator population is not controlled (Yom-6 2 )) . Сonflict situations and different approaches: local solutions with global application Considering the actual population growth rate of humans, increasing demand for natural resources and the growing pressure for access to land, it is clear that the human wildlife conflict will not be eradicated in the near future, however it needs to be managed urgently. A wide range of different management tools has been developed worldwide to address HWC, but most of these are strongly site and species/genera specific and are not widely or easily accessible (IUCN, World Park 9)

This chapter gives an overview of some of the most common management practises, describing their applications, examining how the methods were tested, highlighting lessons learned and successful local solutions, which could be replicated under similar conditions. To better understand why many different remedial measures have been developed around the world but have not been implemented globally, it is essential to underscore that although the management strategies have similar goals, they are embedded in different ecological, social, cultural and economic realities; they are also targeted towards different taxonomic groups. Mitigative strategies attempt to reduce the level of impact and lessen the problem; while preventative strategies endeavour to prevent the conflict occurring in the first place and take action towards addressing its root causes.

Some are efficient in the short-term while others show results only in the long-term; others are more effective within defined geographic regions or specific taxonomic groups. For each of the strategies listed below, a brief description is provided, detailing information on the species involved in the scheme, the geographical region and whether the strategy has been successful or unsuccessful. In some sections proposed potential improvements have been highlighted, as well as strengths and weaknesses. Good management practices and workable and competitive measures that could be replicated across a wider spectrum are highlighted in a table (please see annex). In this table, a strategy is defined as “successful” not only when it has promoted coexistence and minimized the conflict, but also when it has mobilized greater local participation and support for conservation, brought about positive changes in the villagers’ attitudes towards wildlife, improved the relations with local authorities and conservation managers or raised awareness on the value of protecting nature.

“Mixed results” implies that the implementation of the strategy has delivered a partial solution, having a tangible impact on only a few specific, target species. A strategy is defined as “sustainable” if it is a definitive solution and does not need any additional inputs such as financial investment or labour. “Short-term”, in this context, is used as the opposite of sustainable. The idea is to build a collection of a wide range of management practices, evaluated in the field, with the aim of highlighting methods that have been successfully experimented in some regions, but not always widely publicized. The categorization of different approaches is very simple, but detailed information and explanatory comments can be gathered from the following discussion as well as from the original scientific articles.

Artificial and natural barriers (physical and biological) Barriers have the function of preventing spatial overlapping among wild animals and local communities; they are usually man-made, but natural barriers such as rivers, coasts or mountain ranges may occur along a nature reserve boundary. Spatial separation has been proved to be a & & $ =& H6 +9 $2 9 , example, recorded limited tiger conflict around the Way Kambas National Park in Sumatra, owing to the presence of rivers along more than two-thirds of the park’s boundary, which discouraged tigers from leaving the park. Polisar et al., + 9 , 9 ow to promote coexistence of jaguars and pumas with cattle in Venezuela, advised on excluding cattle from the forest and maintaining adequate distance between calving areas and the big cats’ territory. However, spatial separation is not always a satisfactory solution; in India, for instance, in the state of Gujarat, chain link fencing of the eastern boundary of Gir National Park was expected to stop lions and leopards from straying out of the park and to prevent illegal grazing at the same time.

Instead, it was proved not to be economically viable and was only partially successful. In the same area, other types of barriers are under experimentation, such as rubble walls and barbed wire fencing, which have been constructed along some sections of the reserve’s boundary (Vijayan and 3 29 , 9 Some concern about the negative impacts of physical barriers on the ecological equilibrium of the $ # $ & 2* ” + ))(, A 5& 2 3 +9 , 9 2 + )) , encing reserves may affect the population dynamics of animals and hinder their natural migratory and dispersal behaviour, especially in the case of highly territorial species like lions. It is also essential to take into consideration the different, unexpected effects that fencing may have on a wide range of non-target species. Another option is the construction of physical barriers in human settlements to protect crop fields and livestock, while defining properties and gathering farm animals.

Fencing homestead areas instead of an entire reserve boundary is not only less expensive, but allows greater wildlife E $ 2 – ( no ceiling. They can be walls made from different materials such as stone, mud, brushwood, or high rubble, barbed wire or mesh-wire fences. The type of fence depends on locally available materials, as the farmers generally use local products. 9 2 o looked at Eastern African A remarkable study was undertaken by Ogada et al. + 9 , traditional systems of livestock husbandry and explored the effectiveness of various types of fencing. In Northern Kenya, Laikipia District, pastoralists used to gather their herds and keep them inside enclosures at night, when most carnivore attacks take place.

They use different traditional techniques, which are popular among Maasai and Samburu local communities. The enclosures can be made of stone or wooden posts (solid), of Acacia brush (acacia), branches woven around cedar p + ” , 9 + , The effectiveness of the different enclosures in defending livestock from predator attacks was investigated; it was discovered that not only did domestic animals experience a lower depredation rate when penned in corals over night, but also that the type of pen was a significant factor associated with a lower total loss for sheep and goats, being kept in wire, acacia, wicker or solid enclosures (listed from the most effective to the least). Good husbandry practices based on

traditional approaches demonstrate the ability to limit depredation by large carnivores (Ogada et al., 9 , 9 Fladry barrier is a technique traditionally used in Eastern Europe and Russia to hunt wolves. It consists of hanging flags 2 $ 9 apart; nowadays it is employed to protect domestic animals from wolf attacks (Musiani et al., 9 ,6 9 $ & &$ vestock depredation, the authors conducted field and captivity experiments in Western North America: Idaho, Montana, Wyoming (USA) and Canada. They documented the avoidance of fladry by wolves for a period of two months and demonstrated its capacity to impede the natural foraging behaviour of wolves. These findings confirm that wolves fear the fladry and do not attempt to access food sources located on the other side of the barrier. However, concern is expressed on the practical aspects of applying fladry over a large-scale because of the maintenance required to reposition wrapped flags and to substitute flags that have been removed by cattle.

Besides, it is suspected that other external variables, such as habituation or an extended period of food deprivation due to lack of alternative prey, could induce wolves to cross the barrier. To conclude, this anti-predator technique is advantageous only for managing wolf predation risk and it has never been successfully employed with other species. As Shivik et al. +9 , 9 # & 0 + 7, 1* 2 &$ + #’ , $ predators such as black bears (Ursus maritimus) and bald eagles (Haliaeetus leucocephalus). Alternative barriers have been sought, for instance planted hedgerows of various spiny cacti and moat. Plant hedges have the positive aspects of being a low cost solution and are effective with both carnivores and ungulates. On the other hand, they are very slow to establish, do not deter baboons # 2 $&+ 2 )) , It is clear that physical barriers are not always an economical management practice. They frequently require additional labour from farmers and their family members and never ensure complete protection. The reason for this failure can be explained by the behaviour of different animal species. Burrowing animals for instance, breach the barrier and permit access to other species, as Hoare + )) , 2 $ $ & + Phacochoerus spp.).

In Rajasthan, India, where stone wall, mud and brushwood fences were constructed, farmers claimed that nilgai (Boselaphus tragocamelus, &5 boar (Sus scrofa, $ $ + ” 2 ))(, * In Zimbabwe, in the areas of land neighbouring the Wildlife Research Area, the conflict is serious, despite the reserve being fenced and livestock being penned into fortified enclosures at night. This is because baboons, lions and leopards can pass through the reserve fence and jump into the enclosures. Improving fences with the addition of a roof would substantially reduce the economic + < 2 99 ! 9, 2 ” substantial difference in rural livelihoods; in India, for instance, in the state of Himachal Pradesh, farmers have covered their livestock pens with chain-link fences and reported that this chain-link ceiling is one of the anti-predator management techniques that is significantly reducing livestock ” + . 2 ))’, In addition to these conventional types, electric fencing can be considered as a more sophisticated solution.

It is more durable, due to the reduced physical pressure from animals, it deters a wider range of species and is more aesthetically appealing. However, the cost of installation is higher  compared to the simple fences and the maintenance implies a need for constant insulation (Hoare, )) , In Kenya, in Endarasha and Ol Moran villages located in Nyeri and Laikipia Districts, electric fencing is successfully being used to separate wildlife from human settlements and agricultural + & 0 8 * 2 ))%, ! = $ 2 F 2 effective strategy in reducing the human-elephant conflict on a large-scale. Electric fencing has proved to be the only long! 2 successfully protected during the first year of experimentation, in spite of close proximity to a national park and a high density of elephants. Despite the high cost of maintenance and installation, it was demonstrated that electric fencing is cost-effective to the community by means of reduced elephant attacks, which in turn resulted in crop increases and an increased income for farmers.

It is anticipated that it will take four years for a return on investment to be realised (O’Connell-Rodwell et al., 9 9 9, In conclusion, all the barriers discussed above have some limitations as they cannot deter every single species of animal and they can be breached by particularly strong or agile target species. However, they are an optional technique for mitigating the conflict and must be used in conjunction + 6 8 29 $ 9 , Guarding Monitoring herds and active defence are essential features of animal husbandry in East Africa, where human herders are effective and fearless in warding off predators. In this region, herders are reported to challenge and scare away dangerous carnivores such as lions, hyenas and cheetahs with nothing more than simple weapons like spears, knifes or firearms (Patterson et al.2 9 , ! 9 Northern Kenya, the presence of human guards, dogs and human activity were associated with lower rates of livestock attacks by large predators (Ogada et al., 9 , 9 Guarding is also a popular preventative strategy in some parts of India as a study in the Sariska Tiger Reserve, Rajasthan, demonstrates.

In this region, the majority of the farmers ranked guarding as the most efficient and common measure to protect their crops, despite requiring additional labour + ” 2 ))(, * 7 6 8 +9 $ 9 , $ successful strategy for managing predation risk from coyotes, black bears (Ursus maritimus) and even cheetahs, but less effective with wolves and grizzly bears (Ursus arctos). Although the effectiveness of this defence practice is dependent on humans also being present to ensure that the dogs remain with the livestock. In North America dogs are often left alone to safeguard domestic animals and are not as effective as in Europe and North Asia where shepherds and ranchers work directly with their dogs (Musiani et al., 9 , 9 Alternative high-cost livestock husbandry practices Movement activated guard (MAG) devices and electronic training collars (EC) are deterrent systems based on aversive stimuli, they are very high-cost and cutting edge techniques. The first one relies on disrupting a predator’s attack through stimuli that disturb the animal’s normal behaviour; these stimuli can be gustatory (chemical), visual (light), olfactory or auditory (siren) and are activated by the animal approaching protected resources.

In order to reduce the ability of wild animals becoming accustomed to the device, it is usually equipped with a variety of different’ recorded sounds and other alternative responses; however its usefulness is still limited because, over time, animals can become accustomed to the disruptive stimuli (Shivik et al., 9 , 6 9 device relies on an animal’s ability to learn and it causes discomfort, pain or other negative experiences when the animal enters human settlements or livestock areas. The device becomes effective when the animal learns to associate the occurrence of a negative stimulus with a particular behaviour (Shivik et al., 9 , 9 The effectiveness of these two disruptive stimuli approaches was tested in a multi-predator area in Wisconsin and also on captive wolves in Mi 6 . 74 $ 9 recorded sound effects including yelling, gunfire and helicopters. It was activated by the movement of proximal, large animals. The EC devise was instead activated by wires buried underneath the perimeter of the area to be protected.

It was found that, in the field, the MAG devise reduced the daily consumption of carcass by wolves, black bears (Ursus americanus) and bald eagles (Haliaeetus leucocephalus, $ %(C2 & $ olves was effectively controlled by MAG but not by EC. The latter device was difficult to use with wolves, because of their unpredictability in terms of response; some wolves were disturbed by the stimulus and ran away while others found it mildly annoying and continued in their activity. Moreover, the EC device entails some logistical, animal care and maintenance problems. In conclusion, the experiment demonstrated that the MAG device gives a greater degree of protection, is easier to manage and has a wide-scale potential application, providing the stimuli is varied and random (Shivik et al., 9 , 9 It is clear that high-technology devices are much more expensive and complicated to use than the traditional management options discussed up until now.

In addition, supplementary research is needed to better define the long-term potential contribution of high-technology devices to husbandry practices. Relocation: voluntary human population resettlement Where alternative land and incentives are available, relocation of local communities to areas offering better access to natural resources and socio-economic opportunities can be an adequate 0 + . 29 , ! 9 2 between wildlife and people, can be successful in the long run if some essential assumptions are met: firstly the villagers should gain substantial benefits, such as better access to resources, secondly they should be relocated to an area where the risk of losing property is lower and thirdly & & 2 + 6 8 29 $ 9 , Waste management systems that restrict wildlife access to refuse Good standards of waste management are important to avoid attracting wild animals to human settlements and to prevent wild populations being augmented and artificially sustained by humaninduced food availability.

Each stage of waste handling should be addressed, from collection to transportation to disposal. MITIGATIVE STRATEGIES: Compensation systems HWC carries significant economic costs to humans and compensation is a measure which aims to alleviate conflict by reimbursing people for their losses. Compensation systems rely on giving out  monetary payments or licenses to exploit natural resources, allowing the hunting of game or the collection of fuel wood, timber and fodder from inside protected areas. Of the two methods, financial compensation is a very contentious issue and the least popular due to its inefficiency and low rate of reimbursement. This is a reality in many developing countries, which face budget constraints and usually pay on an irregular basis and to a limited extent. The second compensation scheme, also known as the “settlement of rights” to use natural resources, appears to be a more practical solution, as the following case studies demonstrate.

In India, in the state of Karnataka, financial compensation schemes are not very effective. The process of claiming compensation and the verification and approval procedures are very bureaucratic and often result in only a small portion of the claims being paid. In a survey ” $ ))% ))) C ” %C * & 2 $ ” % $ & 2 C “” C + . 29 , 9 Such problems have been reported elsewhere in India, in particular in the state of Himachal Pradesh, where people are discouraged from claiming compensation because of the time and costs ! 2 )) 2 ly compensated: in that year, only half of the agro-pastoralists claiming compensation for losses from ” & $ 2 & C + . 2 ))’, In Kenya, compensation schemes are very problematic. The government has not provided any $ ” )() & installations that are destroyed by wild animals. Moreover, the compensation received for loss of human life or injury is not sufficient to cover funeral expenses or hospital bills. It also does not take into consideration the impact of such incidents on dependent children who are often taken out of school because of the lack of funds to pay their fees (Keny 0 * 2 ))%, Obviously, this type of compensation scheme can do little to reduce the HWC and needs to be modernized in order to become less bureaucratic, more reactive and transparent.

The calculation of the amount of cash to be reimbursed should be proportional to the loss, the number of family 2 2 $ + & 0 8 * 2 ))%, However, there is some concern about improving and enforcing this system because it is suspected that a well-develop compensation scheme would result in inflated claims and attract people from $ + ” 2 ))(, ! * 2 this is not a sustainable solution as it depends heavily on the final budget of the local governing bodies and it does not encourage villagers to protect their holdings and to coexist with wild animals. An alternative approach, the “settlement of rights”, appears to be a better strategy. It fixes a quota of commodities that can be exploited, it clearly demarcates reserve zones that are accessible to local villagers and it legitimises their rights to those resources. Indeed, the benefits derived from the legitimate collection of natural resources influence the attitudes and perceptions of rural residents 2 $ & + ” 2 ))(, * )

Insurance programmes Livestock and crop insurance is often proposed as an innovative solution to mitigating the impact of HWC, but it is yet to be experimented broadly. It covers crops and livestock from the risk of wildlife attacks and involves the villagers and local governing bodies paying a premium share of the insurance and allows rural inhabitants to make a minimum annual cost and to be refunded in the event of crop or livestock losses. In addition, the local governing bodies or the forest department are relieved of significant financial expenses, from not having to administer compensation schemes (Madhusud 2 9 , 9 Despite the fact that this approach has not yet been experimented over a large scale, a collaborative insurance programme is in progress in the state of Himachal Pradesh, India, where it seems to be implemented successfully. In fact, villagers contribute monthly to the insurance programme and receive compensation in proportion to the total number of livestock killed and the total amount paid into the insurance fund during the year.

Moreover, they get monetary rewards for better antipredatory herding and have learned simple rules to reduce domestic animal vulnerability, such as being aware of sick, young or pregnant animals and not to collect the carcasses of killed yaks, horses, cattle or donkeys. As a result they have become progressively more responsible in safeguarding wildlife and have modified their husbandry and guarding behaviour (Mishra et al., 9 , 9 Incentive programmes Incentive programmes are based on subsidies. They offset the cost of conservation and demand the adoption of conservation-friendly practices, creating tolerance towards wildlife through the exchange of benefits. Two interesting incentive programmes have been developed in India and Mongolia, where agropastoralists and pastoralists live within the snow leopard’s territory (Mishra et al.2 9 , ! ! 2 9 in the state of Himachal Pradesh, the programme succeeded in reducing the forage overlap among $ ” 9 9 ” / other human use.

The villagers received financial benefits for their loss of herding land and the money was used for collective work. As a consequence, wild herbivore densities increased, resulting in more naturally available prey for predators and thus reducing the pressure of carnivores on livestock (Mishra et al.2 9 , 9 In Mongolia, the programme did not permit pastoralists to poach the snow leopard and its prey. The loss of income from poaching was offset by the sale of wool handicrafts, made by the women, to the Snow Leopard Enterprises. Income generation from handicrafts is growing in popularity because $ $ & $ & C 6 is expected to grow rapidly, also because marketing opportunities for the handicrafts are opening.

However one weakness of the incentives programme is the need for subsidies from external sources, from either conservation funds or governments (Mishra et al.2 9 , 9 Community based natural resource management schemes (CBNRMS) A CBNRMS has been established in the Caprivi region of Namibia, where the eco-tourism industry and hunting concessions are potentially valuable for developing a local economy based on wildlife related revenues. This scheme entails a system of returning benefits to rural communities in order to motivate them to protect wildlife outside protected areas and to discourage poaching; it is still at an  early stage, but it is expected to have a real potential in mitigating the conflict (O’Connell-Rodwell et al., 9 9 9, Regulated harvest In many regions, HWC is managed by hunting. This is a low cost technique and has the potential to raise public tolerance towards wildlife.

The money raised from the sale of licences can fund conservati + 6 8 29 $ 6 $ 9 , viewed as a legitimate management practice, hunting needs to be based on scientific monitoring that ensures sustainable harvests and it needs to be regulated by policies that address the timing, location and methods of hunting, as well as the distribution of benefits to all stakeholders. In reality, lethal control is considered to be an expedient to satisfy the aggrieved party and reasons for scientific scepticism are due to the lack of selection of target animals to be eliminated. As a result the individual animals killed are often not responsible for depredation and after their removal other individuals can cause trouble in the same location.

It is assumed that regulated harvest is not effective in reducing crop and livestock losses and it is also likely to increase the risk of further losses when dangerous carnivores are wounded instead of being killed (Treves and Karanth, 9 $ 9 , % Wildlife translocation Translocation consists of moving a certain number of animals from a problematic zone to a new site. In spite of seeming to be the least sensible of the solutions listed above and the risk of exporting the problem to another site, it may be a practical and acceptable approach in some cases and where there is the availability of a suitable habitat with territorial vacancies. Translocation works well when isolated individuals are unable to survive or reproduce because they are too distant from the main population and need to be moved back to their own group; or when a high density $ + 6 8 29 $ 9 , 7 & = ! 2 $ %99 9 29 “& + Macaca mulatta) live in areas of human settlement and translocation has been reported to be the best nondestructive control measure.

In the state of Uttar Pradesh, Vrindaban, where the density of rhesus “& # & +9 ? re kilometre), their presence caused a serious nuisance to inhabitants. They reported suffering from monkeys biting, stealing, damaging and destroying property, such as cars, gardens, house furnishings, television antennaes and electric ! ))’2 9rhesus monkeys were moved from the urban area of Vrindaban to eight different %9 semi6 & $ & C this reduced the conflict. The programme was successful as the monkeys that had been moved, did not show any sign of stress and the villagers and their spiritual leaders in the site that received the monkeys accepted and tolerated their presence.

Moreover, after four years the translocation took place, the monkey population in Vrindaban remained low and the conflict were resolved (Imam and . ” 9 , 2 9 In spite of this successful programme, translocation can cause numerous problems in the case of carnivores, for example translocation into areas already occupied by individuals of the same species + 6 8 29 $ 9 , In most cases the conflict cannot be avoided and translocation does not seem to be an immediate and straightforward solution. However, it is encouraging that the conflict can be minimised through good management practises and housekeeping principles, such as livestock protection at night,  property guarding or avoidance of a predator’s hometerritory. It is also reassuring that some of the successful measures involve low technology tools and low cost approaches such as pens with chainlink ceilings, man-made salt ponds, fladry barriers and insurance programmes.

The strength of this analysis lies in the fact that all the strategies have been tested in the field and their evaluation originates from practical experimentation; the weakness is that it overlooks some management options like chilli crop barriers, fire (fires lit on periphery of fields or smoke from burning) or missiles (stones, spears). The most sensible approach to addressing HWC is to implement a combination of two different approaches: short-term mitigation tools along with long-term preventative strategies, so as to reduce the current problems while fostering the rapid development and use of innovative approaches to address future issues and eradicate the problem. When low environmental impact strategies and traditional low cost deterrents are not successful, some invasive approaches, such as regulated harvest, wildlife translocation or human relocation may need to be implemented.

Among the innovative strategies discussed in this chapter, electric fencing, natural resource use compensation systems, CBNRMS, incentive and insurance programmes seem to be the most sustainable. Irrespective of the approaches adopted, there is a need to test them against any possible side effects, such as the restriction of an animal’s requirements, effects on non-target species and the environment as a whole and last but not least its cost-effectiveness. The best approach should ensure the participation and involvement of local populations, as their goodwill and support in wildlife conservation plays a crucial role for preventing and mitigating HWC. Co-management by rural villagers, researchers and local governing bodies has proved to be the wisest strategy for + 0 5 H6 $ 2 9 ,7 9 & > $ essential, because these case studies suggest that, although HWC can be reduced it will never be fully eliminated.

7 $ $ & means exhaustive, it nevertheless encompasses a wide range of taxa and management options, which have been applied in diverse economic and cultural contexts. Some invaluable lessons can be learnt from each of the cases described in the previous chapter and practical recommendations can be inferred in order to design better interventions and to improve existing conflict management practices. Therefore, this final chapter suggests and discusses potential areas of improvement. Conservation education for local populations Education and training activities at different levels, for instance in schools or in adult education arenas such as farmer field schools, would have the objective of disseminating innovative techniques, building local capacity in conflict resolution and increasing public understanding of HWC. Educating rural villagers in practical skills would help them to deal with dangerous wild animal species and to acquire and develop new tools for defending their crops and livestock.

Over time it would result in a change of behaviour amongst local populations and would contribute to reduced risks, improvements in local livelihoods and a reduction in their vulnerability. In an optimistic scenario, education and training would promote commitment towards conservation, raise awareness on the essential role of wildlife in the ecosystem functioning and its ethical and economic value, as well as its recreational and aesthetic importance. Better definitions and prediction of hot spots, data collection and evaluation of the impact There are currently no national summary statistics defining the magnitude of the damage caused by G , 2, 2, $ , -economic + . 299 9, Likewise, this literature review demonstrates that existing data from many study areas is not comprehensive, despite the fact that the true severity of social and economic losses can only be estimated with accurate data. Good-quality and high-value information could be gathered through archival records, questionnaires, and interviews with women, community groups, village leaders, household heads, local government officials and other seasonal forest users.

The challenge would be to develop and maintain an updated database containing the broadest array of records documenting the type and location of the incidents. Such a database would provide a detailed overview of the impact on local populations, better identify which geographical zones are more vulnerable to HWC and which species are commonly involved in the conflict. As a result, it would ensure adequate use of resources, help identify high-risk areas and allow effective responses to + =& H 6 29 $ 9 , The categorisation and quantification of the level of incidence is generally carried out through common indicators such as the number of livestock kills in a year or the annual economic loss. However, the use of this kind of information is constructive only if it is taken in the context of the specific social, economic and ecological dimensions of the study area; for example the number of livestock killed over a period of time is an inconsistent figure and it would be more informative if it were related to the total family livestock holding or total village units.

The quantification of the economic losses should also be related to annual household income or the economic value of the family holdings (cattle, agricultural fields). Information gathered should include: dimension of the  study area (village, province, region), number of people injured or killed over a fixed period of time, wild animal mortality induced by humans as well as species responsible or suspected to be involved in the conflict. Appropriate research should also take into account a family’s land tenure, crops grown and yields, damage calculated as percentage of crop loss per hectare or percentage of crop loss per annual production; livestock ownership and percentage of domestic animals killed and their current market price. With the aim of providing a complete scenario, it should be specified which protection measures were adopted, the time and money spent on defending the property, any additional damage to it (pipelines, fences, etc) and any suggested measures to reduce the losses.

However, there are some factors that may affect the accuracy of the information collected, for instance agro-pastoralists are not always able to determine the exact cause of death of an animal (diseases, poor nutrition, poisonous bites) and may blame predators instead. Another case is when the local government underestimates the problem whilst not taking into account isolated and ” + . 2 ))’@3 et al., 9 , 7 9 2 $ 2 intentional exaggeration of information by farmers, which is quite common but can be easily overcome by cross-checking suspicious declarations with field assistants’ local knowledge or field ? &+ ” 2 ))(, * There are obviously many ecological variables that influence HWC and make each case very specific, for instance climatic factors, wildlife density, water, natural prey and forage availability and quality (abundance and distribution), competition with other species and ecosystem equilibrium. Other factors include the distance from a nature reserve, livestock density and land use pattern, which affects the degree of wildlife habitat degradation and fragmentation; they all vary widely among sites and must be evaluated locally.

There is a need to improve the understanding of the ecological, social and cultural dimensions of conflict situations, to better integrate the general overview of HWC at present (International * & * & : . 2 9 ,1 9 # conflict is embedded, requires the exploration of different aspects of regions and countries where it occurs; some elements such as human population density, proportion of urban and rural population and religious beliefs are often overlooked and would be helpful in identifying appropriate solutions. Better sharing of information One of th ! =0 1 3 ” +9 , 9 $ international forum that should act as a global network for sharing information and expertise in addressing HWC. Furthermore, the development of a web-based portal including conflict databases, remedial technologies, good management practices, innovative solutions and their outcomes would be beneficial.

The portal should also provide educational material, information on high-risk areas and links to other relevant and useful web sites. It would provide valuable support to different partners dealing with the problem, granting access to information, recommendations and effective management principles. Considerable up to date technical information on prevention and control of elephant damage is available from the Human-Elephant Conflict Working Group (HECWG) at http://www.iucn.org/themes/ssc/sgs/afesg/hectf/. Promotion of dialogue and cooperation among different stakeholders The success of wildlife conservation and HWC reduction largely depends on the ability of managers to recognize, embrace and incorporate differing stakeholder values, attitudes and beliefs (Messmer, 99 6 9, ” 20

Services or Forestry Departments, non-governmental organization (NGOs), conservation organizations, wildlife managers, the scientific community, tour operators and the tourism industry, rural villagers and other participants, is expected to enhance the participation, contribution and support of each counterpart. Encouraging the creation of partnerships and diverse stakeholders’ compliance and collaboration will make any strategy more successful, will foster mutual assistance and strengthen the possibility of resolving the HWC issue. In Sumatra, HWC falls under the jurisdiction of wildlife conservation authorities, which often ends at the boundary of protected areas. When wild animals cross the boundary, the question of who should be responsible for dealing with the conflict and addressing the issue is not often clear, resulting in the problem remaining unresolved (=& H 6 2 9 ,6 9 ” commitment often produces resentment among indigenous people, which in turn develops into a negative and uncooperative attitude towards wildlife.

Better commitment by governments to address the problem: Improved policy In many situations, strategies or methods for addressing the HWC issue are often constrained by local, national or international reg 2 + H ; ” 2 9 ,. E 9 2 ineffectiveness of some of the management practices is directly dependent on the establishment and application of policies and guidelines on a wide range of human activities. In various countries, existing wildlife policies are outdated, contradictory and require clarification, in particular those regarding land development planning and its impact on wildlife habitats. Policies on land tenure, controlled utilization of wildlife through hunting and the trade of wildlife products, game farming, tourism development and compensation schemes should be strengthened and made to conform to ? + & 0 8 * 2 ))%@ Ministry of water2 2 < $ 29 @ 9 2 )) , Better control of hunting: limitation of persecution and poaching Hunting is undertaken as a means to supplement household food consumption, for financial gain through the sale of animal products (meat skin, furs, ivory etc.) or for retaliatory killing.

The latter is a real problem where HWC occurs. Persecution by humans in response to a problematic coexistence with large carnivores has been the cause of the elimination of several species from a large part of their former home ranges, this is true for species such as the tiger (Panthera tigris), lion (Panthera leo), puma (Felis concolor) and the snow leopard (Uncia uncia,+ . 2 ))’ 9 , 9 In Northern Kenya, the number of predators killed by farmers has been reported to be positively correlated with the number of livestock killed by lions, hyenas and leopards (Ogada et al., 9 , 9 Moreover, Naughton-Treves et al. + 9 , 9 t on large mammals in the heavily forested Tambopata Province in the Peruvian Amazon. They verified that the common practice of hunting big game prevents jaguars and pumas from surviving near human settlements despite the ability of these species to exploit degraded habitats. Besides, $ 2 M” / ” & -use zones in Amazonian forests unless hunting is effectively restricted. A satisfactory solution would involve the protection of the principal prey that wild carnivores depend, by preventing poaching and the commercial harvest of natural prey.

This would maintain  adequate populations and restore the natural balance between predator and prey thus preventing carnivores from relying on a diverse diet that includes domestic livestock (Polisar et al., 9 , ! 9 addition, hunting concessions could be sold to operators organising game safaris and the money invested in protected areas. Better sharing of income from tourism Wildlife is a generator of income through tourism and in many developing countries it is one of the most significant sources of national revenue generation. The tourism industry can increase employment within local communities by creating additional job opportunities. This approach would compensate the cost of maintaining wildlife and contribute to changing local people’s negative perceptions of conservation.

The managers of Kibale National Park in Uganda, for instance, intend to foster positive attitudes towards the park and supportive conservation behaviour by the local populations, though sharing revenues from tourism with the local populations (Naughton-6 2 ))’, % Conclusion This report supports the broadly recognized inference that the human wildlife conflict is escalating and illustrates that it is a worldwide issue, spanning Asia, with elephants destroying agricultural fields, tigers and leopards preying on domestic animals; Africa with numerous carnivores killing cattle and monkeys threatening the food security of rural people; and Europe and North America, with wolves and bears taking livestock and damaging property. The conflict is not restricted to specific geographical regions or climatic conditions but is common to all areas where wildlife and dense human populations have to coexist and share limited resources. It is obvious that the problem is collective but there is an important distinction between the level of vulnerability of agro-pastoralists in developing countries and that of well-off inhabitants in developed nations. Smallholder subsistence farmers face potentially catastrophic losses.

They can lose an entire season’s crop production in one single raid by big and voracious animals such as elephants, chimpanzees, baboons or bushpigs. Their capacity to cope with losses varies even among farmers inhabiting the same region; as Naughton-6 + ))’, crop depredation on rural villagers of the edge of Kibale National Park, in Uganda, depends on farm size. The owners of large farms can employ guards or create a crop buffer zone to separate vulnerable yields from the forest edge, through cultivating less palatable plant species or using the land for pasture. These options are not available to subsistence farmers, who have less choice in their land use and can not afford to pay for guards (Naughton-6 2 ))’, This report reviewed most of the management practices that are being applied under diverse demographic, economic and social circumstances.

It highlighted the costs, benefits and constraints of each option and intended to clarify which techniques could be best implemented under specific conditions. The overall picture is very multifaceted: some management practices turned out to be unsustainable (physical barriers around reserve borders), others need to be heavily subsidised (financial compensation system) and others are very costly and complicated devices to use (MAC, EC), which will not be affordable to most individuals in disadvantaged rural communities. On the other hand, the review of the case studies demonstrated that the conflict can be reduced through good management practices (livestock protection at night, pens with chain-link ceiling), traditional husbandry techniques (guarding and the use dogs) as well as low technology tools, based on local  experience (man-made salt ponds) and low cost approaches (fladry barriers).

Obviously, some of these practices are only effective with some animal species and need to be combined with other methods. There is also a need to bring to light and disseminate innovative practices such as electric fencing, insurance programmes, compensation systems (natural resources) and CBNRMS that have proved to be practical and cost effective in the field. Further experimentation should be undertaken to develop additional science-based techniques and innovative approaches that could make a meaningful contribution to resolving the long-term problem. In conclusion, the simultaneous application of different management practices and the implementation of those designed for local species are recommended. There is no single solution to the conflict and every preventative and mitigative strategy should be empirically tested for its costeffectiveness and possible impact on the ecosystem equilibrium before adoption. The best scenario would imply integrated community development and wildlife conservation promoted by national park managers and supported by local populations.

Community-based conservation should give indigenous people the right to limited and sustainable use of natural resources while promoting tolerance towards wildlife, responsible interaction with their natural +9 , 9 villagers, who live in proximity to Waza National Park in Cameroon, appreciate nature’s intrinsic value and agree with the necessity to protect forests and their wildlife inhabitants for future generations. Their positive attitude towards conservation arises from the use of natural resources such as regulated harvesting of non-timber forest products, the use of waterholes and fishing. Local peoples’ participation is now widely advocated in development and conservation (Zang and 0 2 9 , 9 2 & anagement is becoming increasingly common 7 + 2 9 , 9 & $ resource exploitation is often advocated in multiple areas surrounding the parks (O’ConnellRodwell et al., 9 9 9@ 2 9 ,6 9 $ a local economy based on wildlife and revenue collection from nature reserves, as well as a reduction in the dependence of rural communities on agriculture and farming.

In order to enhance protected area effectiveness, conservation should be based on sound scientific knowledge, practical local indigenous knowledge and collaboration. Protected areas and the presence of wild animal populations inflict costs on local communities and can erode local support and tolerance. In turn, indigenous people can develop a negative attitude towards reserves and wildlife, exacerbating the conflict and undermining conservation efforts. In order to break this cycle, there is a need to protect rural livelihoods, reduce their vulnerability, and counterbalance losses with benefits and foster community-based conservation. Both people and wildlife suffer tangible consequences and different stakeholders involved should commit themselves to tackle and resolve the conflict in the near future.

Bibliography

< 2; + 9 9 The economic costs of wildlife 9, predation on livestock in Gokwe communal land, Zimbabwe. African Journal of Ecology, +, – 9 British Columbia, Ministry of water, land and air protection Wildlife-Human Conflict Prevention Strategy + 9 , [www document] 9 Available at: http://wlapwww.gov.bc.ca/eeeb/info/wildlife_hum an_interaction/ Cozza, K., Fico, R., Battistini, L. and Rogers, E. + ))%, The damage- conservation interface illustrated by predation on domestic livestock in central Italy. Biological Conservation, + , )– ‘ E .0 ; ” 0 < + 9 , The tools 9 and techniques of wildlife damage management-changing needs: an introduction. International Biodeterioration & Biodegradation, ( – : 2 < + 9 , Local perceptions of Waza 9 National Park, northern Cameroon. Environmental Conservation, + , ‘ – ( : F + )) ,The present and future use of fencing in the management of larger African mammals. Environmental Conservation, + , %9 % 2: + 9 ,A decision support system for 9 managing human-elephant conflict situations in Africa. IUCN /SSC African Elephant Specialist Group, 3 < #% G 9Nairobi, Kenya. Human-Elephant Conflict Working Group (HECWG) – IUCN [www document] Available at: http://www.iucn.org/themes/ssc/sgs/afesg/hectf/ Human-Wildlife Conflict Session at the International Symposium on Society and : . +* :. , 9 !* 9 [www document] Available at:
http://www.africanconservation.org/dcforum/DCF ! B’ IUCN – World Conservation Union – Red List of 6 * + 9 , [www document] 9 Available at: http://www.redlist.org/ ! 2 F2 L & 2 . ” ! +9 , A 2 9 successful mass translocation of commensal rhesus monkeys Macaca mulatta in Vrindaban, India. Oryx, + ,(‘-) . Kenya Wildlife Service – Wildlife-human conflicts, Sources, Solutions and Issues + ))%, [www document] Available at: http://www.safariweb.com/kwild/wildlife.htm . 2. + 9 ,Living Amidst Large 9 Wildlife: Livestock and Crop Depredation by Large Mammals in the Interior Villages of Bhadra Tiger Reserve, South India. Environmental Management, + , %%- ‘ 67 + 9 9 The emergence of human– 9, Mess wildlife conflict management: turning challenges into opportunities. International Biodeterioration & Biodegradation, ( – ): . 2 + ))’, Livestock depredation by large carnivores in the Indian trans-Himalaya: conflict perceptions and conservation prospects. Environmental Conservation, + , (Mishra, C., Allen, P., McCarthy, T., Madhusudan, .2 & 5 2 < 7 3 2 + 9 ,The role 9 of incentive programs in conserving the Snow Leopard. Conservation Biology + %, – 9 Musiani, M., Mamo, C., Boitani, L., Callaghan, C., Gates, C., Mattei, L., Visalberghi, E., Breck, * A 2 4 + 9 , Wolf Depredation 9 Trends and the Use of Fladry Barriers to Protect Livestock in Western North America. Conservation Biology + %, (- ‘ Naughton-6 + ))’,Farming the forest edge: Vulnerable places and people around Kibale National Park, Uganda. Geographical Review, + , ‘- %

Naughton-Treves, L., Mena, L., Treves, A., Alvarez, N. : 2 + 9 , Wildlife 9 survival beyond park boundaries: The impact of slash-and-burn agriculture and hunting on mammals in Tambopata, Peru. Conservation Biology + , 9 %- ‘ =& 3 6 : + 9 , Agroforestry, 9 elephants, and tigers: balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agriculture, Ecosystems & Environment, xxx. =& 2 3; 6 2 : +9 $ 9 , Characterizing human-tiger conflict in Sumatra, Indonesia: implications for conservation. Oryx, + ,%(-‘ O’ Connell-Rodwell C.E., Rodwell T., Rice M. and 7 + 9 9 Living with the modern 9, conservation paradigm: can agricultural communities co-exist with elephants? A fiveyear case study in East Caprivi, Namibia. Biological Conservation, + , Ogada, M., Woodroffe, R., Oguge, N.
and Frank, 4 + 9 , Limiting Depredation by African 9 Carnivores: the Role of Livestock Husbandry. Conservation Biology + %, – 9 Patterson B. D., Kasiki S. M., Selempo E. and 8 & : 0 + 9 ,Livestock predation by lions 9 (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biological Conservation, +, 9 ‘- % Polisar, J., Maxit, I., Scognamillo, D., Farrell, L., * ? 2 .F F $ 2 ;E + 9 , 9 Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biological Conservation + , )’– 9 * ” 2 = 1 + ))(, Crop and livestock depredation caused by wild animals in protected areas: the case of Sariska Tiger Reserve, Rajasthan, India. Environmental Conservation, + , %9 ‘ – Shivik, J.A., Treves, A. and 23 + 9 , 9 Nonlethal techniques for managing predation: Primary and secondary repellents. Conservation Biology + %, – ‘

* # 8* 2 * ” 266 + ))),Colobus monkeys and coconuts: a study of perceived human–wildlife conflicts. Journal of Applied Ecology, + 9 )- 9 9 %, 9 6 3 4 7B)9 Ensuring Farmers’ Livelihoods B and Food Security Around Protected Areas: with Specific Reference to Kakum Conservation Area in Ghana. Treves, A. 8 28 1 + 9 ,Human9 carnivore conflict: Local solutions with global applications. Introduction. Conservation Biology + %, ()- )9 Treves, A. 8 28 1 + 9 $ Human9 , carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology + %, ) – )) A 5& * 3 < 3 + 9 , Impact of 9 Changing Cropping Patterns on Man-Animal Conflicts Around Gir Protected Area with Specific Reference to Talala Sub-District, Gujarat, India. Population and Environment, %, – ) Weladji, Robert B. – 6 $ 2. = +9 , 9 Conflict between people and protected areas within the Bénoué Wildlife Conservation Area, North Cameroon. Oryx, + ,’ -‘) 0 2: 4 $ 2;: 2+ ))(,Edge effects and the extinction of populations inside protected areas. Science + ‘ , %– ( 03 : 9 Preventing and Mitigating Human-Wildlife Conflicts IUCN – 0 3 ” 9 N 9 O Available at: ht B B B B B 9 B B 9 B B B B B 9 Yom-Tov, Y., Ashkenazi, S. and VINER, O. + )) , Cattle predation by the golden jackal Canis aureus in the Golan Heights, Israel. Biological Conservation, + , )– 0 = + 9 ,An initial study 9 on habitat conservation of Asian elephant (Elephas maximus), with a focus on human elephant conflict in Simao, China. Biological Conservation, +, – )

Search For The related topics

  • conflict