# Circle and Unit Radius Essay Sample

## Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access## Circle and Unit Radius Essay Sample

plot:

creates 2d line plot

axis:

changes aspect ratio of x and y axis

x label:

annoted the x axis

y label:

annoted the y axis

title:

puts the title on the plot

title of prog: title(‘circle of unit radius’)

print:

prints the hardcopy of the plot

EX:

draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq

is x=cos(t)

y=sin(t)

theta=linspace(0,2*pi,100);

axis=’equal’;

xlabel(‘x’)

ylabel(‘y’)

1. plot y=sinx range 0 x=linspace(0,2*pi,100);

>> y=sin(x);

>> plot(x,y)

>> xlabel(‘x’)

>> ylabel(‘y’)

>> title(‘plot created by ashita’)

2.plot y=e^(-0.4x)sinx range 0 x=linspace(0,4*pi,100);

y=exp(-0.4.*x).*sin(x);

>> plot(x,y)

>> x=linspace(0,4*pi,10);

y=exp(-0.4.*x).*sin(x);

>> plot(x,y)

>> x=linspace(0,4*pi,50);

y=exp(-0.4.*x).*sin(x);

>> plot(x,y)

3. use the cmd plot3(x,y,z) to plot the circular helix x(t)=sin(t) y(t)=cos(t) z(t) =t range:0 t=linspace(0,pi/9,10);

>> x=sin(t);

y=cos(t);

z=t;

>> plot3(x,y,z)

>>> the plot cmd semilogx(x,y) semilogy(x,y) and loglog(x,y)

4.plot the x values , y values and both x and y values on a log10 scale resp. create a vector

x=0:10:1000 plot x versus x^3 using the 3log10scale (semilogx,semilogy,loglog) plot cmd

soln:>> x=[0:10:1000];

>> y=x.^3;

>> semilogx(x,y)

>> x=[0:10:1000];

>> y=x.^3;

semilogy(x,y)

>> x=[0:10:1000];

y=x.^3;

loglog(x,y)

5. plot y=cosx and z=1-(x^2)/2 + (x^4)/24 on 0 x=linspace(0,pi,100); >> y=cos(x);

>> z=1-((x.^2)/2)+((x.^4)/24);

>> plot3(x,y,z)

6.circle

draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq

is x=cos(t)

y=sin(t)

soln:>> theta=linspace(0,2*pi,100);

>> x=cos(t);

y=sin(t);

>> plot(x,y)

7. parabola x=at^2 y=2at t-varies(-4,4)

soln:t=linspace(-4,4);

>> a=1;

>> x=a.*t.*t;

>> y=2.*a.*t;

>> plot(x,y)

8. hyperbola

9. ellipse

An ellipse can be defined as the locus of all points that satisfy the equations x = a cos t

y = b sin t

where:

x,y are the coordinates of any point on the ellipse,

a, b are the radius on the x and y axes respectively, ( * See radii notes below ) t is the parameter, which ranges from 0 to 2π radians.

soln:>> t=linspace(0,2*pi,100);

>> a=10;

>> b=3;

>> x=a*sin(t);

y=b*cos(t);

plot(x,y)