Circle and Unit Radius Essay Sample

Circle and Unit Radius Pages Download
Pages: Word count: Rewriting Possibility: % ()

plot:
creates 2d line plot

axis:
changes aspect ratio of x and y axis

x label:
annoted the x axis

y label:
annoted the y axis

title:
puts the title on the plot
title of prog: title(‘circle of unit radius’)

print:
prints the hardcopy of the plot

EX:
draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq

is x=cos(t)
y=sin(t)
theta=linspace(0,2*pi,100);

axis=’equal’;
xlabel(‘x’)
ylabel(‘y’)

1. plot y=sinx range 0 x=linspace(0,2*pi,100);
>> y=sin(x);
>> plot(x,y)
>> xlabel(‘x’)
>> ylabel(‘y’)
>> title(‘plot created by ashita’)

2.plot y=e^(-0.4x)sinx range 0 x=linspace(0,4*pi,100);
y=exp(-0.4.*x).*sin(x);
>> plot(x,y)
>> x=linspace(0,4*pi,10);
y=exp(-0.4.*x).*sin(x);
>> plot(x,y)
>> x=linspace(0,4*pi,50);
y=exp(-0.4.*x).*sin(x);
>> plot(x,y)

3. use the cmd plot3(x,y,z) to plot the circular helix x(t)=sin(t) y(t)=cos(t) z(t) =t range:0 t=linspace(0,pi/9,10);
>> x=sin(t);
y=cos(t);
z=t;
>> plot3(x,y,z)

>>> the plot cmd semilogx(x,y) semilogy(x,y) and loglog(x,y)

4.plot the x values , y values and both x and y values on a log10 scale resp. create a vector

x=0:10:1000 plot x versus x^3 using the 3log10scale (semilogx,semilogy,loglog) plot cmd

soln:>> x=[0:10:1000];
>> y=x.^3;
>> semilogx(x,y)

>> x=[0:10:1000];
>> y=x.^3;
semilogy(x,y)

>> x=[0:10:1000];
y=x.^3;
loglog(x,y)

5. plot y=cosx and z=1-(x^2)/2 + (x^4)/24 on 0 x=linspace(0,pi,100); >> y=cos(x);
>> z=1-((x.^2)/2)+((x.^4)/24);
>> plot3(x,y,z)

6.circle
draw a circle of unit radius x and y co ordinates 100 points of the circle the parametric eq

is x=cos(t)
y=sin(t)

soln:>> theta=linspace(0,2*pi,100);
>> x=cos(t);
y=sin(t);
>> plot(x,y)

7. parabola x=at^2 y=2at t-varies(-4,4)

soln:t=linspace(-4,4);
>> a=1;
>> x=a.*t.*t;
>> y=2.*a.*t;
>> plot(x,y)

8. hyperbola

9. ellipse
An ellipse can be defined as the locus of all points that satisfy the equations x = a cos t
y = b sin t
where:
x,y are the coordinates of any point on the ellipse,
a, b are the radius on the x and y axes respectively, ( * See radii notes below ) t is the parameter, which ranges from 0 to 2π radians.

soln:>> t=linspace(0,2*pi,100);
>> a=10;
>> b=3;
>> x=a*sin(t);
y=b*cos(t);
plot(x,y)

Search For The related topics

  • plot
  • Olivia from Bla Bla Writing

    Hi there, would you like to get such a paper? How about receiving a customized one? Check it out https://goo.gl/3EfTOL

    sample
    Haven't found the Essay You Want?
    GET YOUR CUSTOM ESSAY SAMPLE
    For Only $13.90/page