We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Determination of the Relative Atomic Mass of Lithium Essay Sample

essay
The whole doc is available only for registered users OPEN DOC
  • Pages:
  • Word count: 1347
  • Category: reaction

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Determination of the Relative Atomic Mass of Lithium Essay Sample

Reacting Lithium with water

Mass of Lithium reacted

0.08g

Volume of Hydrogen collected

131cm3

Titration

Rough

1

2

Volume of LiOH

25cm3

25cm3

25cm3

Volume of HCl required

25.6cm3

25.4cm3

25.4cm3

Analysis

1.

2Li(s) + 2H20(l) 2LiOH(aq) + H2(g)

a) Finding the number of moles of Hydrogen:

To find the number of moles of Hydrogen, we use the values we have collected and place them into the ideal gas equation:

n = ?

P = 1.01 x 105 Pa = 101 000 Pa

V = 131cm3 = 131 x 10-6 m3 = 0.000131m3

R = 8.31 J mol-1 K-1

T = 18�C = 291K

n = PV = 101 000 x 0.000131 = 13.231 = 0.00547 mol (3 s.f)

RT 8.31 x 291 2418.21

b) Finding the number of moles of Lithium:

To find the number of moles of Lithium, we use the mole ratio found in the equation above:

Mole ratio Li : H2 = 2 : 1

Therefore, nLiOH = 2 x 0.00547 = 0.0109 mol

c) Finding the relative atomic mass of Lithium:

n = 0.0109 mol

m = 0.08g

Ar = ?

n = m therefore Ar = m = 0.08 = 7.34 (3 s.f.)

Ar n 0.0109

2.

a) LiOH(aq) + HCl(aq) LiCl(aq) + H2O(l)

b) Finding the number of moles of HCl:

To find the number of moles of HCl used in the titration, we use the values we have collected, and place them into the following equation:

C = n therefore n = CV

V

C = 0.1M

V = 25.6 + 25.4 + 25.4 = 25.47cm3 (2 d.p) = 0.02547dm3

3

n = ?

n = CV = 0.1 x 0.2547 = 0.002547 mol

c) Finding the number of moles of LiOH:

To find the number of moles of HCl, we use the mole ratio found in the equation above:

Mole ratio LiOH : HCl = 1 : 1

Therefore the number of moles of LiOH = 0.002547 mol

d) Finding the number of moles of LiOH in 100cm3:

In 25cm3 there are 0.002547 moles of LiOH. Therefore in 100cm3 there will be 0.002547 x 4 mol = 0.0102 mol (3 s.f)

e) Finding the relative atomic mass of Lithium:

To find the relative atomic mass of Lithium, we return to the original equation we used:

2Li(s) + 2H20(l) 2LiOH(aq) + H2(g)

By using the mole ratio Li : LiOH = 1 : 1, we determine that the number of moles of Li used is 0.0102 mol.

To find the relative atomic mass of Lithium, we use this value and the mass we have already collected and place them into the following equation:

n = m therefore Ar = m = 0.08 = 7.84 (3 s.f)

Ar n 0.0102

3. Estimating the percentage error:

Burette in method 1: maximum amount of distilled water used: 50.15 + 50.15 = 100.3

minimum amount of distilled water used: 49.85 + 49.85 = 99.7

Therefore maximum percentage error for the burette in method 1 = 3%

Balance in method 1 : maximum mass of lithium used: 0.09g

minimum mass of lithium used: 0.07g

Therefore maximum percentage error for the balance in method 1 = 0.01 x 100 = 12.5%

0.08

250cm3 measuring cylinder in method 1: maximum amount of gas collected: 136cm3

minimum amount of gas collected: 126cm3

Therefore maximum percentage error for the measuring cylinder in method 1 = 5 x 100

131

= 3.8%

Pipette in method 2: maximum amount of LiOH used: 25.05cm3

minimum amount of LiOH used: 24.95cm3

Therefore maximum percentage error for the pipette in method 2 = 0.05 x 100 = 0.2%

25

Burette in method 2: maximum amount of HCl used: 25.75 + 25.55 + 25.55 = 25.62

3

Minimum amount of HCl used: 25.45 + 25.25 + 25.25 = 25.32

3

Therefore maximum percentage error of the Burette in method 2 = 0.15 x 100 = 0.59%

25.47

Balance from method 1 for method 2: 12.5%

Total maximum percentage error for method 1 = 3 + 12.5 + 3.8 = 19.3%

Total maximum percentage error for method 2 = 0.2 + 0.59 + 12.5 = 13.29%

Evaluation

1. Consistency of Titration results:

All three of my titration results were consistent, and there were no anomalous results, with a difference of 0.2 between my rough titration and the other two experiments, which were the same.

To calculate the average titre, I used all three of the results, including the rough titration and the two other titrations. No titres were ignored, as all of my results were concordant, and there were no anomalies.

2. Difference between results and accepted value:

Method 1: Result = 7.34

Accepted Value = 6.9

Difference = 0.44

Method 2: Result = 7.84

Accepted Value = 6.9

Difference = 0.94

Differences as a percentage of the accepted value:

Method 1: 0.44 x 100 = 6.38%

6.9

Method 2: 0.94 x 100 = 13.62%

6.9

3. Magnitude of difference between accepted value and calculated value:

For method 1, my result is 6.38% out from the accepted value. As the maximum percentage error for method 1 is calculated to be 19.3%, my result is within the boundaries of percentage error, and therefore we can say that it is fairly accurate, taking into account the error of the apparatus.

For method 2, my result is 13.62% out from the accepted value. As the maximum percentage error for method 2 is calculated to be 13.29%, my result is just out of the boundary for percentage error. Therefore we can say that the method was fairly accurate, but was less accurate than method 1.

4. Looking at method and error:

Although my method for both 1 and 2 were fairly accurate, there were errors that could have taken place. When filling the measuring cylinder with water, and inverting it into the water bath, a small ‘bubble’ of air appeared at the top. Although I took this into account when calculating the volume of gas collected, there could have been error, both from my reading and from the cylinder percentage.

When using the burette, it was difficult to fill it exactly to the ‘zero’ mark, and so my measurements from the burette may have been slightly wrong. This is added to by the width of the meniscus, and the difficulty in having an accurate reading.

Another possibly source of error is the time taken after adding the lithium to the water to replace the bung. Although I tried to limit this time, some lithium could have reacted and produced hydrogen gas before I managed to replace the bung.

However, my method was very accurate, which is shown by the accuracy of my results.

5. Improvements to minimise sources of error:

To minimise the error from using the measuring cylinder, I could use a gas syringe instead, which is more accurate, and would allow me to calculate a more accurate result for the volume of hydrogen produced. This would also discard the error involved with inverting the cylinder of water into the water bath, resulting in the bubble of air forming.

It is difficult to minimise the sources of human error, such as the readings from the burette, or the time between adding the lithium and replacing the bung. However, by ensuring that I carry out the experiment as accurately and replacing the bung as swiftly as possible helps to minimise these errors.

We can write a custom essay

According to Your Specific Requirements

Order an essay

You May Also Find These Documents Helpful

Examining the Solubility of Substances in Double...

Aim: The aim of this investigation is to perform various double replacement reactions with known substances and record the qualitative observations. Furthermore, writing the equations for the reactions and apply the rules of solubility to see if every color change equals to a precipitate. It is predicted that a solid will form only when there is a change in color. Plan: Materials: * ZnSO4 solution...

The Reaction Time

The focus of this study was to investigate how the participation of different sports activities affects the reaction time. Two hypotheses were established based on my research question: "People who carry out sports should have a faster reaction time than those who do not" and "The sport where a fast reaction time is most important, thus where training sessions focus on improving it the most,...

Rate Of Reactions Of Yeast And Glucose,...

Aim: The aim of this experiment is to compare the rate of reactions of the reaction of yeast with the three different carbohydrates, namely glucose, sucrose, and lactose. Hypothesis: The rate of reaction should be fastest in the reaction between yeast and sucrose, since sucrose is broken down to two molecules of glucose, thereby giving more glucose for the yeast to act on. Therefore, for...

The Effect of the Particle Size on...

CaCO3 (s) + 2HCl(aq) --> H2O (l) + CO2 (g) + CaCl(aq) Variables: Variable Methods of Measurement Independent Size and Surface area of the CaCO3 particle; in chip of approximately 3x3x3 mm in size or in powder form. Pre-measured. Materials are given. Dependent Volume of gas produced in 3 minutes measured by the graduated glass collecting tube Using a graduated glass collecting tube. The gas...

Kinetics of the Acid-Catalyzed Iodination of Propanone

The aim of this investigation is to calculate the values of x, y and z and hence the overall order of the reaction. Prior to proposing a possible mechanism for the reaction that is consistent with the suggested rate equation. The value of k, the rate constant will also be determined for this reaction at the temperature (room temperature) at which the experiment was conducted....

Get Access To The Full Essay
icon
300+
Materials Daily
icon
100,000+ Subjects
2000+ Topics
icon
Free Plagiarism
Checker
icon
All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

By clicking "SEND", you agree to our terms of service and privacy policy. We'll occasionally send you account related and promo emails.
Sorry, but only registered users have full access

How about getting this access
immediately?

Become a member

Your Answer Is Very Helpful For Us
Thank You A Lot!

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?

Couldn't Find What You Looking For?

Get access to our huge knowledge base which is continuously updated

Next Update Will Be About:
14 : 59 : 59
Become a Member