We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Enzyme IA Biology Essay Sample

essay
  • Pages: 10
  • Word count: 2,690
  • Rewriting Possibility: 99% (excellent)
  • Category: enzyme

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Introduction of TOPIC

Aim: Investigate the effect of a factor that influences enzyme activity

Background: Scientists attended a Pre Lab discussion about enzymes reviewing the many factors that should commonly affect enzymes such as temperature, poison, pH, number of enzymes and solubility. The role of enzymes was also reviewed in order for students to develop their own lab. Enzymes are proteins which serve as a catalysts, a chemical agent that changes the rate of a reaction without being consumed by the reaction. Every reaction before starting has a hill of energy that it must first get over before it can begin its reaction known as the Energy of Activation. This energy of activation is much higher without the enzyme present and with the enzyme is lowered to the point where reactants can turn into products more readily. In regards to temperature, higher temperatures speed up all reactions but at a certain temperature enzymes begin to become denatured(deactivated) and at even higher temperatures 60 or more they only continue to become less effective.

Research Question: At what temperature does the catalase of lived produce the most Oxygen in a reaction of hydrogen peroxide?

Hypothesis: If the catalase’s temperature is changed by both heating and cooling then the catalase will be most effective in terms of amount of Oxygen produced (ml) when cooled.

Independent Variable: Temperature of enzyme liver

-Increased the liver temperature by 22C from room temperature of the catalase solution to correlate a high temperature at 44C

-Decreasing the liver temperature by 22C from room temperature of the catalase solution to correlate a low temperature 0C

-Increase is by 22C because in order to reach 0C it must be decreased by 22C from room temperature

-Begin with room temperature

Dependent Variable: Amount of Oxygen produced from the liver, Hydrogen Peroxide reaction (ml)

-Calculated by the amount of water displaced by Oxygen

Control Variable: Room temperature of the Liver

Materials:

-15 test tubes -1 plastic tub -Hot Water Tub

-3 Thermometers -Ice Bath tub -1 100ml beaker

-3 Pipets -Tongs – 2 10ml graduated cylinders

-Blender -Weightboat -Scalpel

– 1 stopper w/ tub – Liver Container -Water

-Hydrogen Peroxide – Clock

Calculation Table:

example

Avg Amount of Water displaced = Avg

Avg= Sum of trials 1-5/3 of Trials

Avg= 5.0ml+5.0ml+8.5ml+3.0ml+4.5ml/5

Avg=5.2ml

Temperature

Average amount of Water Displaced(ml), Oxygen Produced

One Standard Deviation

low temperature

0C

5.2ml

2.03

Room temperature

22C

23.06ml

7.74

high temperature

44 C

11.4ml

3.36

Procedure:

1. Retrieve Lab Materials from Supplies Cart in Center of the Lab

2. Construct a Data a Table for recording data collected

a. Label Column One Temperature (C)

b. Label Columns 2-6 Trial followed by numbers 1-5

c. Label row 1 column 1 0C

d. Label row 2 column 1 Room Temperature leaving space to add calculated temperature

e. Leave row 3 column 1 44C

3. Retrieve Liver for Liver Solution

a. Gather weightboat, scalpel, electronic balance and Liver Container

b. Turn Electronic balance on after plugging in

c. Place weightboat on electronic balance

d. Press reset button on electronic balance zeroing out the balance

e. Open liver Container

f. Using Scalpel, make an incision on the liver cutting a small piece

g. Place liver on weightboat

h. Continue to add/remove level by making incisions with scalpels until 2.5g is gathered

i. Place liver by Blender

4. Retrieve Water for Liver Solution

a. Turn cold water tap halfway

b. Place 100ml beaker under water

c. Use Pipet to adjust amount of water in beaker to exactly to 100ml.

5. Make Liver Solution

a. Plug Blender in

b. Tighten removable bottom securely

c. Pour 100ml beaker of water in

d. Let liver drop into blender using scalpel to remove as much liver as possible from weightboat

e. Secure Lid onto Blender

f. Press Frappe Button

g. Blend until liver solution no longer has visible chunks and is a light brown color.

h. Pour Liver Solution from blender back into 100ml beaker

6. Fill Water Tub

a. Place Tub under tap

b. Turn Water on Halfway

c. Wait until tub is 3/4 full of water

d. Place Water tub on table

7. Fill graduated cylinder with water

a. Turn tap water on a quarter of the way

b. Wait until water is completely full of water and then turn tap water off\

c. Have a Lab Partner hand fully over the graduate cylinder

d. Place cylinder in water and turn upside down and remain so until ready for data collection

8. Prepare Hydrogen Peroxide and place in beakers

a. Open Hydrogen Peroxide container

b. Pour 10ml into a 10ml graduated cylinder

c. Use a Pipet to adjust amount of Hydrogen Peroxide to exactly 10ml

d. Pour 10ml

of Hydrogen peroxide into test tube e. Repeat until all 15 test

Sorry, but full essay samples are available only for registered users

Choose a Membership Plan
tubes are full

9. Calculate temperature of liver to establish room temperature of the Liver solution(control)

a. Place thermometer into 100ml beaker

b. Wait about 2 minutes making sure the thermometer is no longer changing temperature

c. Record temperature of thermometer onto Row 2 Column 1 next to Room Temperature

10. Conduct Data

a. Pour 10ml of Liver solution into 10ml graduated cylinder

b. Use Pipet to gather 1ml of liver solution changing the concentration in the graudated cylinder from 10ml to 9ml

c. Place a Hydrogen Peroxide filled test tube in the hand of the partner 2 who is holding the graduated cylinder underwater

d. Have the other Partner 1 hold stopper w/ tube and the Pipet filled with 1ml of Liver solution

e. Have partner 2 place tube inside 100ml graduated cylinder

i. With graduated cylinder underwater lift about 2 inches

ii. Push tube inside cylinder

iii. Slowly lower 100ml graduated cylinder down until tube Is secured in cylinder

f. Have partner 1 note starting time by looking at the clock

g. In the same second squirt Pipet filled with 1ml of Liver solution into test tube with 10ml of Hydrogen Peroxide

h. As quickly as possible stop the test tube with the stopper

i. Have partner 1 count out 20 seconds by looking at the clock

j. After 20seconds record amount of amount of oxygen produced in graduated cylinder. (this will be the amount of water that escaped outside of the cylinder noted by the empty space in the graduated cylinder)

11. Repeat step (10) 4 more times

12. Cool Liver solution to 0C

a. Pour 10ml of Liver solution into 10ml graduated cylinder

b. Remove bottom piece of graduated cylinder leaving only the cylinder left

c. Place thermometer inside cylinder

d. Dig small space in ice tub with enough space for 10ml cylinder

e. Place 10ml liver solution into ice

f. When thermometer reads 0C repeat step 10 b-j 4 more times making sure to note that the 10ml graduated cylinder will be the one filled with 0C liver solution

g. Between each trial place the 10ml graduated cylinder will be the one filled with 0C liver solution back into ice tub

13. Heat up Liver to 44C

a. Fill hot water tub 3/4 full with water

b. Plug hot water tub in

c. Turn knob clockwise until halfway heat

d. Pour 10ml of Liver solution into 10ml graduated cylinder

e. Remove bottom piece of graduated cylinder leaving only the cylinder left

f. Place Thermometer inside cylinder

g. With tongs grab 10ml graduated cylinder

h. Place cylinder in hot water tub until temperature reaches 44C

i. At 44C run back to lab table with graduated cylinder

j. Repeat step 10 b-j note that the 10ml graduated cylinder will be the one filled with 44C liver solution

k. Between each trail repeat step 13 a-j 4 more times.

Conclusion:

After viewing the data collected and noting the ability of the catalse to perform at 3 different levels of temperature it can be concluded that at 22C the liver solution and hydrogen peroxide reaction produce the most oxygen. This conclusion contradicts the hypothesis which was “If the catalase’s temperature is changed by both heating and cooling then the catalase will be most effective in terms of amount of oxygen produced(ml) when cooled.” Instead the control is displayed the best ability to produce the most amount of oxygen. This can be observed through comparing the averages of oxygen produced between catalase temperatures. The cold temperature of 0C produced an average of 5.2ml of oxygen. The room Temperature of 22C produced an average of 23.06ml of oxygen. The high temperature of 44C produced an average of 11.4ml. This data supports the conclusion that at room temperature, more oxygen is produced by the reaction.

In regards to the pre-lab discussion the data clearly shows the ability of temperature to affect the performance of the enzyme suggesting that while the lab may not have been conducted perfectly it does in fact hold some credible ground. It can be noticed that room temperature is closest to a human being’s body temperature suggesting a reason for how enzymes work in the body of humans as well as how the human body allows for the function of enzymes. First enzymes work most effectively at a temperature that is close to human body temperature and second the human body maintains the temperature of 37(C) so that enzymes can work efficiently and allow the human body to survive. The previous statement is only a prediction that could only be proven if the experiment tested the performance of the enzyme at 37 (C).

Weaknesses were mainly within the procedure. Let it first be pointed out that the liver concentration may not be completely accurate. This is due to the fact that when collecting the 2.5g of liver and placing the liver into the blender there was some liver that stuck to the weightboat. This slightly adjusts the liver to water ratio of the liver solution but it does not throw off the collection of data because it applied to all three levels of the Independent variable ensuring precision. Additionally the timing in step 10 h and I was most certainly not kept consistent. This was due to the fact that the pipet did not always squirt all of its liver solution into the test tube in one go combine with the failure to stop the test tube fully in the first capping. This error directly affects the accuracy of the amount of oxygen produced because it allowed some of the oxygen produced in the first few seconds of the reaction to escape into the lab environment instead of travelling into the stopper w/tubing.

Not only does it affect accuracy but also precisions because the timing was the always consistent it caused varying amounts of error to occur between each trial. This can be viewed most apparently during Trial 3 for room temperature where 35.0ml of oxygen was produced, an outlier among other trials which affects the average amount of oxygen (ml) produced for room temperature (22C). This could also explain the reason why the standard deviation was higher for room temperature (22C) at 7.74 compared to 0C at 2.03 and 44C at 3.36. This throws the conclusion slightly off balance because it was error that aided it in displaying the greatest ability to produce the most oxygen. However while it is slightly off balance it is still a viable conclusion supported by outside sources in form of the pre-lab discussion regarding the tendencies of an enzyme to perform “In regards to temperature, higher temperatures speed up all reactions but at a certain temperature enzymes begin to become denatured (deactivated) and at even higher temperatures 60 or more they only continue to become less effective.”

In spite of the fact that this conclusion is supported by pre-lab discussion there is still room for improvement should this lab be conducted again. First in order to assure the accuracy of liver/water ratio the procedure should be modified in step 5 d to add an additional step to scrape out liver stuck to weightboat so that the proper liver/water ratio can be certain. Second the addition of an additional partner should be introduced into the procedure so that the test tube can be stopped more effectively by a third partner allowing the second partner to focus on holding the test tube and the first partner to focus on emptying the pipet. This in turn will make up for whatever oxygen was lost to the lab environment and instead allow that lost oxygen to be recorded in the data.

We can write a custom essay on

Enzyme IA Biology Essay Sample ...
According to Your Specific Requirements.

Order an essay

You May Also Find These Documents Helpful

An Investigation of the Effect Enzyme Concentration...

Introduction This lab contains the use of a catalase which is an enzyme found in liver. The substrate used in this experiment is hydrogen peroxide. Enzymes are very sensitive organic molecules. They speed up chemical reactions. A high temperature, or change in pH could cause damage to an enzyme or affect its motion. In this lab the enzyme concentration is increased to see its effect on the rate of catalase activity. The enzyme concentration is increased by increasing the number of discs which contain liver on them. The hydrogen peroxide reacts with the catalase which causes it to decompose. The products which are formed from the decomposition reaction are water and oxygen gas. The volume of oxygen gas produced is observed in this experiment. Question How does the rate of catalase activity change over a period of time? Does the amount of catalase present influence how much enzyme activity changes...

Modifying a Simple Hydrolysis of Sucrose Experiment...

How can the Michaelis Menten constant for the dextrase content of yeast be calculated with simple experiment on hydrolysis of sucrose? Introduction: In anaerobic conditions yeast cells break down sugar molecules into ethanol and produce carbon dioxide. The process is called alcoholic fermentation. The equation of this process is: C6H12O6 -> 2 C2H5OH + 2 CO2 ↑+ E. The process consists of a series of reactions catalyzed by specific enzymes. The enzymes present in yeast cells are specific, i.e. they will catalyze the fermentation of certain sugars but not others. Michaelis–Menten kinetics is one of the simplest and best-known models of enzyme kinetics. The model takes the form of an equation describing the rate of enzymatic reactions, by relating reaction rate to , the concentration of a substrate S. Its formula is given by ( http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics) Independent variable: Different concentrations of sucrose(%)(range: 0.0% (Distilled water), 0.5%, 1.0%, 5.0%, 10.0%, 20.0%)...

Rate of Activity of the Enzyme Catalase...

In this study of increasing target temperature of enzyme catalase coated onto paper filter disks reacting through 3% hydrogen peroxide solution in culture tubes, there was an increase in amount of time taken for the enzyme catalase coated filter paper disks to float to the top of the 3% hydrogen peroxide solution in culture tubes (table 2) as the temperature of the catalase enzyme passed the 40 mark. All of the paper filter disks coated with enzyme catalase were placed in the same amount and temperature (in mL and filled to the same level in every culture tube with 2cm gap from top of culture tube) of 3% Hydrogen peroxide solution in culture tubes. All the filter paper disks coated with enzyme catalase were damp, opaque, white and solid (table 1) before exposure to 3% hydrogen peroxide solution and after exposure to 3% hydrogen peroxide they were fuzzy with bubbles...

Popular Essays

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?