We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Geometry in Daily Life Essay Sample

essay
The whole doc is available only for registered users OPEN DOC

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Geometry in Daily Life Essay Sample

Geometry (Ancient Greek: γεωμετρία; geo- “earth”, -metron “measurement”) is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a body of practical knowledge concerning lengths, areas, and volumes, with elements of a formal mathematical science emerging in the West as early as Thales (6th Century BC).

By the 3rd century BC geometry was put into an axiomatic form by Euclid, whose treatment—Euclidean geometry—set a standard for many centuries to follow.[1] Archimedes developed ingenious techniques for calculating areas and volumes, in many ways anticipating modern integral calculus. The field of astronomy, especially mapping the positions of the stars and planets on the celestial sphere and describing the relationship between movements of celestial bodies, served as an important source of geometric problems during the next one and a half millennia. Both geometry and astronomy were considered in the classical world to be part of the Quadrivium, a subset of the seven liberal arts considered essential for a free citizen to master. History of geometry

The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC.[5][6] Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying, construction, astronomy, and various crafts. The earliest known texts on geometry are the Egyptian Rhind Papyrus (2000–1800 BC) and Moscow Papyrus (c. 1890 BC), the Babylonian clay tablets such as Plimpton 322 (1900 BC). For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum.[7] South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks.[8][9] In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore.

He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales’ Theorem.[10] Pythagoras established the Pythagorean School, which is credited with the first proof of the Pythagorean theorem,[11] though the statement of the theorem has a long history[12][13] Eudoxus (408–c.355 BC) developed the method of exhaustion, which allowed the calculation of areas and volumes of curvilinear figures,[14] as well as a theory of ratios that avoided the problem of incommensurable magnitudes, which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements, widely considered the most successful and influential textbook of all time,[15] introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom, theorem, and proof.

Although most of the contents of the Elements were already known, Euclid arranged them into a single, coherent logical framework.[16] The Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today.[17] Archimedes (c.287–212 BC) of Syracuse used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave remarkably accurate approximations of Pi.[18] He also studied the spiral bearing his name and obtained formulas for the volumes of surfaces of revolution.

In the Middle Ages, mathematics in medieval Islam contributed to the development of geometry, especially algebraic geometry[19][page needed] and geometric algebra.[20] Al-Mahani (b. 853) conceived the idea of reducing geometrical problems such as duplicating the cube to problems in algebra.[21] Thābit ibn Qurra (known as Thebit in Latin) (836–901) dealt with arithmetic operations applied to ratios of geometrical quantities, and contributed to the development of analytic geometry.[22] Omar Khayyám (1048–1131) found geometric solutions to cubic equations.[23] The theorems of Ibn al-Haytham (Alhazen), Omar Khayyam and Nasir al-Din al-Tusi on quadrilaterals, including the Lambert quadrilateral and Saccheri quadrilateral, were early results in hyperbolic geometry, and along with their alternative postulates, such as Playfair’s axiom, these works had a considerable influence on the development of non-Euclidean geometry among later European geometers, including Witelo (c.1230–c.1314), Gersonides (1288–1344), Alfonso, John Wallis, and Giovanni Girolamo Saccheri.[24] In the early 17th century, there were two important developments in geometry.

The first was the creation of analytic geometry, or geometry with coordinates and equations, by René Descartes (1596–1650) and Pierre de Fermat (1601–1665). This was a necessary precursor to the development of calculus and a precise quantitative science of physics. The second geometric development of this period was the systematic study of projective geometry by Girard Desargues (1591–1661). Projective geometry is a geometry without measurement or parallel lines, just the study of how points are related to each other. Two developments in geometry in the 19th century changed the way it had been studied previously.

These were the discovery of non-Euclidean geometries by Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860) and Carl Friedrich Gauss (1777–1855) and of the formulation of symmetry as the central consideration in the Erlangen Programme of Felix Klein (which generalized the Euclidean and non-Euclidean geometries). Two of the master geometers of the time were Bernhard Riemann (1826–1866), working primarily with tools from mathematical analysis, and introducing the Riemann surface, and Henri Poincaré, the founder of algebraic topology and the geometric theory of dynamical systems. As a consequence of these major changes in the conception of geometry, the concept of “space” became something rich and varied, and the natural background for theories as different as complex analysis and classical mechanics.

We can write a custom essay

According to Your Specific Requirements

Order an essay

You May Also Find These Documents Helpful

Numerical Methods

The place in which the graph of a line crosses the x axis is known as the root of the equation. It is not always possible to find the solution of an equation by algebraic or analytical methods such as factorising. This applies to equations such as y=3x3-11x+7. To solve equations such as these, numerical methods such as change of sign, x=g(x) and Newton-Raphson can...

Decimal Search

In maths equations can be solved using various methods. A very common and efficient method in solving equations is algebraically. But not all equations can be solved algebraically; these equations must be solved using numeric methods. I will study three specific numeric methods on different equations. ~ Change of sign, decimal search process. ~ Newton-Raphson method. ~ Re-arrangement method. I will be testing the numeric...

Maths Coursework: Curve Fitting

I was firstly given the task of finding the equation of the quadratic graph which passes through the points (5,0), (3,0), (0,15). To solve this I began by drawing a rough sketch of what I thought the graph would look like with these points, as below: (0,15) (3,0) (5,0) I worked out that the graph would look like this, and next I worked out the...

Significant Study

This study aims to propose an intervention program covering the secondary mathematics subject. The academe, both faculty and students, shall benefit through having a guided program to increase the quality of the mathematics teaching-learning process. administrators and the university itself will also benefit once the proposal had been approved, executed and positively assessed, producing competent students, thus encouraging more patrons who seek for quality education....

Supreme Mathematics

1. Knowledge-the sum of what is known. knowledge is facts, awareness or familiarity gained by doing the knowledge. Who is knowledge? It symbolizes the black man. When can you knowledge? Anytime. Where? Everywhere. How is knowledge gained? Through study, learning, listening, trial and error, observing, reflection 2. Wisdom-who is wisdom? Symbolizes the woman. What is wisdom? Wisdom is wise actions, ways and words. Good judgment...

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

We can't stand spam as much as you do No, thanks. I prefer suffering on my own.
logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?