We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Investigate the Affects on the Rate of Heat Conduction Under Different Insulations Essay Sample

essay
  • Pages: 5
  • Word count: 1,375
  • Rewriting Possibility: 99% (excellent)
  • Category: experiment

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Introduction of TOPIC

Materials that prevent heat loss are called insulators. They can prevent three different types of heat loss;

1. Conduction

2. Convection

3. Radiation

Conduction of heat occurs mainly in solids. This process is where vibrating particles pass their extra vibration energy to neighbouring particles.

Convection of heat only occurs in liquids and gasses. Convection occurs when the more energetic particles move from the hotter region to the cooler region taking their energy with them.

“Radiation of heat is sometimes referred to as infer-red radiation” (taken from school text book). Heat radiation can travel through a vacuum. This process is different from the other two; it travels in straight lines and at the speed of light. This is the only way heat can reach us from the sun. Heat radiation travels through transparent matter like air, glass, and water. No particles are involved in this process; it is the transfer of heat energy purely by waves.

In this investigation I will be looking at conduction of heat through glass beakers. I aim to investigate what type of material is the best insulator of the glass beaker. After the experiment I intend to conclude which material is the better insulator, what affects its efficiency and why others didn’t perform as well?

To investigate this I will conduct an experiment. To conduct the experiment I will need the following set of equipment;

* Beaker x 5

* Digital stop watch x 5

* Pure water 200ml x 5 ( 1l )

* Black paper

* Polystyrene

* Bubble wrap

* Silver backed card

* Thermometer x 5

There are small samples of each material/insulator below.

I will boil some water using a kettle. I will then pour the hot water into a beaker; from here I must move fast before the temperature falls below my starting point. The beaker will be wrapped in one of the selected materials, supported by elastic bands. I will record the temperature of the water over a 20 minute period. I will take the temperature every 60 seconds.

I will do this for each of the above materials recording my results in a table as I conduct my investigation. I have chosen to do all the experiments at the same time due to lack of time. Once I have completed this method for all the materials, I will then conduct the method using no material. This will enable me to observe the effect on the rate of heat conduction on an un-insulated source.

Throughout conducting my investigation I will take a number of precautions to ensure my experiments fair. I will ensure that the water starts at the same temperature of 78c. I will use 200ml of pure water in all the beakers because different amounts of water will largely af

fect the cooling rate making the experiment inaccurate. Although the materials might be different in

Sorry, but full essay samples are available only for registered users

Choose a Membership Plan
thickness, as you can see and feel on the previous page, it is important that they cover the same surface area i.e. one layer covering the whole side of the beaker.

I will also take a number of safety precautions whilst conducting the investigation. I will ensure the kettle is used safely throughout the experiment, and hot water is transferred securely. I will have to take into consideration that basic rules may be broken and pupils around me may run. This means that I will have extra careful that no-one bumps into me as it could be very harmful to others and me. In addition, if any spillage does occur I will have to clean it up as soon as possible and make others aware of it. I will be cautious when handling the beakers when the hot water is present.

My hypothesis based on the fact that the following will affect the efficiency of the material as an insulator,

1. colour

2. thickness

3. density

The lighter the material in colour the better insulator it will be. I predict this because light colours are poor radiators, therefore they will reflect the heat back into the beaker if the lighter colour is on the inside.

The darker materials will absorb the heat and release it the other side so is a bad insulator and will cause rapid heat loss.

The thickness and density of the material will also have a significant impact on the materials efficiency. Air is a very poor conductor, so materials with lots of large air pockets will be good insulators i.e. the bubble wrap. For the material to have lots of air pockets it has to be less dense and quite thick. The air trapped in the pockets will also trap heat that has moved with particles. These factors will help to reduce heat loss.

From the above information I have been led to believe that a poor insulator will be thin, dark in colour with small if any air pockets, allowing heat convection and conduction which will increase heat loss rapidly. When first exploring this experiment I felt that the silver backed card would be the best insulator, but because of the evidence I have deduced I predict that the bubble wrap and polystryrene will be the better insulators.

From my results I can deduce that the rate of heat loss decreases is decreased dramatically by all insulating materials. This trend was ex[ected. All the results are very close but they clearly show that the best insulator from the selection of materials is the bubble wrap.

These results do not match my prediction entirely because I did predict that the polystyrene would be best aswell. But I can understand that it is more compact and has few air sockets to trap the heat. However it still does match my hypothesis because I predicted that the bubble wrap, which had the biggest air pockets, would insulate well. This means that the primary factor in preventing heat loss is stopping convection currents and trapping warm air. To my surprise the black card was seriously ineffecient.

The result marked in red in the polystyrene column at 15 minutes was the only anomalous result I could find. This may have been because of human error.

scatter graph on the next page.

In evaluating my experiment and the overall investigation I felt I achieved my aim and my results enabled me to clearly conclude from the experiment. In correlation to my method i feel that I completed the experiments clearly, safely, and with small difficulty and feel that it satisfied my aim. As far as I can see all my results are highly accurate and only one was anomalous.

If I conducted the experiment again I would use a wider variety of materials and take each experiment at a time. I would also increase the amount of times I did the experiment for each material to gain an average. I would do this because then I would be able to gain more accurate and reliable results. I would extend my experiment further by making sure that I investigated further into anomalous results and maybe trying to find a cooling rate or point of each insulation.

Overall I think my investigation was successful as it achieved the requirments of the set task and aim. It gained reliable results and clearly showed a trend.

We can write a custom essay on

Investigate the Affects on the Rate of Heat Conduc ...
According to Your Specific Requirements.

Order an essay

You May Also Find These Documents Helpful

Designing an Osmotic Potential Experiment with Potatoes

Osmosis is used throughout the kitchen in various countries. In France, aubergines and cucumbers are often soaked in salt to create a nicer texture, however chefs lack understanding of why this happens, as they would have forgotten about it after they finished school, they only know that it happens. Therefore, this experiment is designed to explain to the millions of chefs around the world why the water is “sucked” out of a vegetable when it is dipped into a salt or sugar solutions. I believe that having knowledge over the reason for something can open up new ways of thinking; this is why I think it is so important to explain the reason behind this phenomenon. Famous chefs are also known to be under time pressure; for example, every cooking show on TV includes some sort of time pressure scenario, weather it is a ticking clock or waiting customers. For...

Investigating the Effects of Salt on Seed...

PROBLEM/RESEARCH QUESTION In this investigation, we are researching and investigating whether the concentration/percentage of NaCl (salt) in water affects the germination rate of seeds and if so, which concentration germinates the most seeds. We will formulate our research by conducting an experiment in which we will observe the germination of seeds in various concentrations of salt water and evaluate the results gathered. In particular, we will measure the percentage of seeds germinated in one week and formulate our conclusions from there. HYPOTHESIS I hypothesise that the highest percentage of seeds will germinate in the petri dish that contains the lowest percentage of NaCl in water- 0.5% salt salinity and the percentage will decrease as the percentage of salt in the solution increases. I predict this because I know from prior knowledge that seeds need to be able to absorb H2O to germinate and salt prevents this. So if we increase...

Investigating the Effect of Sodium Fluoride on...

Graph Showing the effect different volumes of Sodium Fluoride has on the average rate of production of H+ ions as measured by the colour change of resazurine Comment on Graph: The graph depicts a positive trend, as the amount of Sodium Fluoride increases the average rate of H+ ions as measured by the colour change of resazurine also increases. This increase is consistent with each 5 mL increase of Sodium Fluoride resulting in an increase of one assigned numerical colour. This steady increase plateaus at 15mL with no further colour change. Conclusion and Evaluation Conclusion In our experiment we tested whether changing the amount of Sodium Fluoride effects the rate of respiration as measured by the colour change of resazurine. Our experiment indicates that there is a relationship between sodium fluoride and the rate of respiration. In our experiment the more sodium fluoride that was added the less colour change,...

Popular Essays

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?