We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Maths in Every Day Life Essay Sample

essay
The whole doc is available only for registered users OPEN DOC
  • Pages:
  • Word count: 478
  • Category: maths

A limited time offer!

Get a custom sample essay written according to your requirements urgent 3h delivery guaranteed

Order Now

Maths in Every Day Life Essay Sample

Otherwise, r can be found as a ratio of the birth rate to the death rate. If we let 1 + r = b, the base of the exponential expression, the function becomes p = p 0bt. An alternative version of this relation describes the time it would take for the population to reach a given amount p: t = logb( p / p0). Students will use both functions to predict the future global population, provided the current growth rate or 1.3% (Abbott, 2004). This relation will also be used to find out how long it will take the global population to reach a certain level. Tsunami

A tsunami is a high-speed sea wave of seismic origin created by “an underwater earthquake, landslide, or volcanic eruption”(Johnston, 2001). A shallow water wave is a water wave in which the wavelength is larger than the water height, or ocean depth (Banks, 1998). Since humans are concerned with a tsunami primarily at the shore, where the water is not deep, tsunami are explored as a shallow water wave. That is, people are most concerned with the height of a wave as it hits shore. Tsunami will be discussed in the context of water depth, wave velocity, period, wavelength and energy. The wavelength, velocity and period of a shallow ocean wave are related by the direct variation equation L = CT, where L = wavelength, C = velocity, and T = period (Bryant, 2005). This is an example of a linear relation between velocity and period. Period or velocity may also be expressed as a ratio of the other two quantities. Students may be asked to find any one of the three variable quantities, provided the other two.

A square root function that models tsunami velocity as a function of water depth is v = (gD)1/2, where g = 9.8m/s2 and D = water depth. Alternatively, this can be a quadratic model to find the depth of water if the wave velocity is known: D = v2 / g (Abbott, 2004, Banks, 1998). The energy of a water wave, particularly a tsunami, can be modeled as a function of wave height and wavelength, using the following quadratic equation: E W = 0.125pgH2L, where E W = wave energy in joules, p = density of water, g = 9.8m/s2, H = wave height, L = wavelength (Abbott, 2004). Alternatively, wave height can be modeled as a square root function of wave energy and wavelength: H = 2(2E W / (pgL) 1/2 ). Students will use this relation to find both water depth and velocity. They should also be asked to compare the energy of shallow waves of different heights and wavelengths, in order to differentiate between linear and quadratic relationships. This is probably most easily found through using a tabular representation of the relation, then comparing the respective energies.

We can write a custom essay

According to Your Specific Requirements

Order an essay
Get Access To The Full Essay
icon
300+
Materials Daily
icon
100,000+ Subjects
2000+ Topics
icon
Free Plagiarism
Checker
icon
All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

By clicking "SEND", you agree to our terms of service and privacy policy. We'll occasionally send you account related and promo emails.
Sorry, but only registered users have full access

How about getting this access
immediately?

Become a member

Your Answer Is Very Helpful For Us
Thank You A Lot!

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?

Can't find What you were Looking for?

Get access to our huge, continuously updated knowledge base

The next update will be in:
14 : 59 : 59
Become a Member