We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Pressure Drop over a Bubble Cap Plate Essay Sample

The whole doc is available only for registered users OPEN DOC

Get Full Essay

Get access to this section to get all the help you need with your essay and educational goals.

Get Access

Pressure Drop over a Bubble Cap Plate Essay Sample

EXPERIMENT: Pressure drop over a bubble cap plate.

AIM : This experiment is conducted in an experimental test ring in which the effect of the variation in vapor and liquid flow rates on the pressure drop across bubble cap plates is simulated using air and water to represent the vapor and liquid respectively.

THEORY: In a pilot tube the relation between the gas velocity and pressure drop is

Where, is the differential pressure as expressed in the head of the fluid flowing.

’=level difference
= density of air= 1.21 kg/m3
’=density of liquid (water) =1000 kg/m3
Volumetric gas flow rate V (m3/s) is calculated by assuming a flat velocity profile inside the tube. This is justifiable as the flow is turbulent V= v * s’

Where s’= pipe cross sectional area
Vapor velocity inside the distillation column (v) =


• Allow water to pass through the equipment to ensure the plates are loaded with liquid and then stop the water flow. Wait till the excess water is drained from the plates.

• Set the inclined manometer to a suitable inclination to measure the differential pressure.

• Switch on the blower and measure across the pilot tube, keeping the air flow rate constant. Select the appropriate valves only (one “high” valve and one “low” valve) and measure the pressure drop across the three plates.

• Reuse the air flow rate by partially closing the inlet of the blower and repeat the above procedure to obtain pressure drop at various air i.e. vapor velocities.

• Repeat the above with two different water (i.e. liquid) flow rates which are kept constant.

• Measure the water flow rate by measuring the amount of water collected in a known time interval.


A distillation column can use either trays or packing. Their mechanisms of mass transfer differ, but the key for both is a good approach to equilibrium through the generation of large amounts of interfacial area. In a trayed column, liquid flows down the column through down comers and then across the tray deck, while vapor flows upward through the liquid inventory on the tray. The most common gas disperser for cross-flow plates has been the bubble-cap. This device has a built-in seal which prevents liquid drainage at low gas flow rates.

Gas flows through a center riser, reverses the flow under the cap, passes downward through the annulus between riser and cap and finally passes into the liquid through a series of openings or “slots” in the lower side of the cap. Trays and packing materials are widely used in distillation. Normally packed columns are used for gas-liquid and liquid-liquid contacting operations. That Means packed columns are used for distillation, gas absorption and liquid-liquid extraction. However, these Columns are used extensively for absorption and, to a limited extent, for distillation. But some time the packing materials are not suitable for the distillation process. Those times we can use trays to achieve the requirement.

The types of trays used in distillation
Bubble cap tray
Valve trays
Sieve trays
High Capacity Trays
Cartridge Trays

A bubble cap tray has riser or chimney fitted over each hole, and a cap that covers the riser. The cap is mounted so that there is a space between riser and cap to allow the passage of vapour. Vapour rises through the chimney and is directed downward by the cap, finally discharging through slots in the cap, and finally bubbling through the liquid on the tray. Advantages of Bubble cap plate

• Bubble cap trays are used primarily where large turndown ratios are required. • Their construction allows very low liquid rates to be handled with little or no leakage. • Due to their ability to operate at low vapor and liquid rates, bubble cap trays are used in a significant portion of fractionation tray installations.

Disadvantages of bubble cap trays

• Capacity of perforated trays is often plotted as a function of percent hole area. Actually, the capacity of a perforated tray is not much affected by hole area unless the lack of hole area increases pressure drop and down comer backup to unacceptable values. For example, if a perforated tray has sufficient hole area to limit dry tray pressure drop to a reasonable value (about 2″ to 3″ liquid at 80% flood) the perforated tray will have the same capacity as a valve tray. A bubble cap tray cannot be designed to have as much hole area as a valve tray and will, therefore, have less capacity. • Bubble cap trays cannot be used to achieve high flow rates. • Not like the other trays, for bubble cap trays it has low efficiency.

Distillation process

Distillation is the dominant process for separating large multi component streams into high purity products. So, the chemical process industries’ ongoing quest to improve energy utilization, reduce capital costs, and boost operating flexibility is spurring increasing attention to distillation column optimization during design. Designers often approach column optimization in an iterative manner, heavily relying on vendor experience and information. A good understanding of mass-transfer and pressure-drop fundamentals, as they relate to optimization, will enable the column designer to independently judge vendor offerings and effectively determine the optimal equipment design. This article will address the following optimization goals: (1) maximizing theoretical stages per height of section or column, (2) minimizing pressure drop per theoretical stage,

(3) maximizing the operational range, turn-down, or turn-up. Tray pressure drop

Typical tray pressure drops lie in the range of 250 – 1500 N/m*m (or 2.5 mbar – 15 mbar or 25 – 150 mm Water Column, in whatever units one prefers). Usually, the drop in pressure caused by gas flowing through a tray is small in comparison to the system pressure. Except for vacuum columns, where it can become quite substantial and the gas velocity in the perforations may become comparable to the velocity of sound. The tray pressure drop plays an important part in filling up the down comers. To compensate for the pressure drop, a liquid head builds up in the down comers, to enable the liquid to flow down against it. When the tray pressure drop becomes excessive with respect to the height of the down comers, flooding will be the result.

The tray pressure drop is composed of (at least) two (major) contributions:a pressure drop caused by the gas flowing through the perforations in the tray floor. This contribution depends on gas flow rate, fraction free area and the pressure drop coefficient of the particular perforations (or valves) being used. This pressure drop coefficient depends on relative hole thickness (i.e. the ratio of tray thickness over hole diameter), hole shape and nearness of other holes (ratio of hole pitch to hole diameter).a pressure drop caused by the liquid present on the tray. This liquid hold up effect primarily increases with an increase in outlet weir height, decreases with an increase in gas flowrate and increases with an increase in liquid flowrate. To a lesser extent, it depends on physical properties of the gas/liquid system. Other kinds of trays that are used in industry

We use many kinds of trays to achieve some goals
The optimization goals are:
(1) Maximizing theoretical stages per section or column height, (2) Minimizing pressure drop per theoretical stage, and
(3) Maximizing the operational range, turn-down, or turn-up. Industries that used Bubble cap trays
• Glycol Dehydration
• Caustic Scrubber (Wash Section)
• Amine Columns (Wash Section)
– H2S or CO2 Removal

Errors involved in practical
• In the apparatus there wasn’t any meter to calculate the inclination of the manometer. So we faced great difficult to find the angle of manometer. By using an appropriate method to calculate the angle we can minimize the error. • In the apparatus there wasn’t any method to change the water flow rate quickly. We have to collect water in to a bucket in a one minute of time period. That was not a good method, as we cannot change the water flow rate as we wish.

We can write a custom essay

According to Your Specific Requirements

Order an essay

You May Also Find These Documents Helpful

Designing an Osmotic Potential Experiment with Potatoes

Osmosis is used throughout the kitchen in various countries. In France, aubergines and cucumbers are often soaked in salt to create a nicer texture, however chefs lack understanding of why this happens, as they would have forgotten about it after they finished school, they only know that it happens. Therefore, this experiment is designed to explain to the millions of chefs around the world why...

Investigating the Effects of Salt on Seed...

PROBLEM/RESEARCH QUESTION In this investigation, we are researching and investigating whether the concentration/percentage of NaCl (salt) in water affects the germination rate of seeds and if so, which concentration germinates the most seeds. We will formulate our research by conducting an experiment in which we will observe the germination of seeds in various concentrations of salt water and evaluate the results gathered. In particular, we...

Investigating the Effect of Sodium Fluoride on...

Graph Showing the effect different volumes of Sodium Fluoride has on the average rate of production of H+ ions as measured by the colour change of resazurine Comment on Graph: The graph depicts a positive trend, as the amount of Sodium Fluoride increases the average rate of H+ ions as measured by the colour change of resazurine also increases. This increase is consistent with each...

Effect of Salinity on Germination

Colour used to indicate the raw data used to calculate example mean Colour used to indicate the raw data used to calculate example standard deviation Raw Data table 2 showing the effect changing the salinity of water added to ten ungerminated Vigna radiate (mung bean) seeds has on the seeds ability to successfully germinate as determined by the visible presence of a radicle seven days...

To Investigate the Effect of Regular Mowing...

T Test A T Test has been conducted to determine whether there is a marked difference in the heights of white clover petioles in mown and unmown areas, Null hypothesis: there is no significant statistical difference between the heights of petioles of white clover in unmown and mown areas. Alternative hypothesis: there is a significant statistical difference between the heights of petioles of white clover...

Get Access To The Full Essay
Materials Daily
100,000+ Subjects
2000+ Topics
Free Plagiarism
All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

By clicking "SEND", you agree to our terms of service and privacy policy. We'll occasionally send you account related and promo emails.
Sorry, but only registered users have full access

How about getting this access

Become a member

Your Answer Is Very Helpful For Us
Thank You A Lot!


Emma Taylor


Hi there!
Would you like to get such a paper?
How about getting a customized one?

Can't find What you were Looking for?

Get access to our huge, continuously updated knowledge base

The next update will be in:
14 : 59 : 59
Become a Member