We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

The Time Taken for Diffusion and Cell Dimension Essay Sample

essay
  • Pages: 6
  • Word count: 1,578
  • Rewriting Possibility: 99% (excellent)
  • Category: cell

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Introduction of TOPIC

Aim:

To investigate the relationship between the time taken for diffusion and cell dimension.

Procedure:

1. Place the gelatin block on a tile or Petri dish and use a scalpel or razor blade to cut it in half, producing two cubes of 10mm sides

2. Keep on of these cubes intact and cut the other in half

3. Repeat this cutting operation until you have 4 more cubes.

4. Fill a test-tube to within 10ml of the top with dilute HCl

5. Note the time: starting with the largest block drop all the blocks into the acid in the test-tube and close it securely with a rubber bung or cork.

6. Tilt the tube to spread the gelatin blocks along its length. Hold the tube horizontally and rotate it so that you can see each block clearly and from all sides. Try not to warm the tube too much with your hands or the gelatin may dissolve.

7. Note the time taken for the acid to penetrate to the center of the block as indicated by the disappearance of the orange color.

Data Collection:

This is a table of results showing the time for hydrochloric acid to penetrate a gelatin block with the variance of size which includes surface area, volume and surface area to volume ratio.

Uncertainty: 1% error (50ml measuring cylinder)

Cube Number

1

2

3

4

5

Cube Dimensions (mm)

10x10x10

10x10x5

10x5x5

5x5x5

5x5x2.5

Time for acid to penetrate (s)

709

359

187

95

46

Cube Surface Area (cm2)

6

4

2.5

1.5

1

Cube Volume (cm3)

1

0.5

0.25

0.125

0.0625

Cube SA/Vol ( cm2 /cm3) ratio

6

8

10

12

16

Conclusion:

We can see for the table that as the block of gelatin goes from 5*5*2.5mm to 10*10*10mm the volume is increasing at a faster rate than the surface area. That is why we see that the surface area to volume ratio decreases as size increases. As the gelatin block grows it needs to carry out more and more reactions with the hydrochloric acid in order to turn fully pink.

We can deduce the following information from the graphs:

* As surface area increases so does the time for the acid to penetrate.

* As volume increases so does the time for the acid to penetrate.

* From the graph we can generalize that if the gelatin block has a smaller surface area to volume ratio then it will take more time for the acid to penetrate.

Since the R2 value of all the graphs is around 1 (0.9631, 0.9976, 0.9972) this suggests

that the regression lines have a closer correlation to the points on the graph. From this we can deduce that though there were many possible sources of error in the lab they were not too severe.

Evaluation: An error in the lab

Sorry, but full essay samples are available only for registered users

Choose a Membership Plan
might have been that I was holding the test tube for long time and I was holding the test tube to the sunlight in order make a distinction between the orange and the red. Both holding the test tube with my warm hands and holding the test tube to the sunlight could have increased the temperature of the Hydrochloric acid and thus increasing the rate of penetration.

The results could have been affected due to the following reasons of human error. One place where human error takes place is when cutting the gelatin into blocks as we can never be sure if the sizes we have cut are exactly the sizes that are wanted. There are such problems as cutting in a straight line as well as measuring and handling a jelly-like substance. Another human error would be making the distinction between when the orange gelatin has become fully pink. By doing the experiment I can honestly say that it is very difficult to decide when the orange has become pink as it is a gradual change and not an immediate one. The results are based on what people perceive the color to be. There is also human error in stopping the stop watch. When you decide that the color has fully changed and you want to stop the stopwatch it takes at least a few seconds for your brain to process that and for your finger to hit the stop button. This is inevitable.

There is also error in measuring the water and the hydrochloric acid. We used a 50ml measuring cylinder accurate to �0.5ml and we measured 10ml of water and 40ml of hydrochloric acid. Therefore the error would be 1% percent. And we haven’t taken into account human error in reading the measuring cylinder.

As you can see this lab is full of errors which are virtually unavoidable. To improve this lab I would make sure to hold the test tube with tongs instead of my hands and instead of using sunlight to help me distinguish the colors I would used a piece of black or white paper. This would help keep the temperature of the hydrochloric acid constant.

I would also try to find of if possible create square cutters (like cookie cutters) in the correct dimensions so that u can simply stamp out the blocks. This would be much more accurate than cutting them free-hand.

To help distinguish the colors better I would use a more diluted hydrochloric acid. This would lower the rate of reaction as well as make the change in color slower and therefore my reading would be more accurate.

Discussion

We can infer from our results that the relationship between the rate of penetration of acid into gelatin and the size of the block is that the time for the acid to penetrate increase respectively with size.

To relate this lab to biology it would be useful to think of the gelatin block as a single-celled creature. Then we can put our results and conclusions into more scientific terms. When a cell grows, the volume increases at a faster rate than the surface area. Thus, as cells grow, the surface area to volume ratio decreases. A cell needs surface area in order to carry out metabolic functions (chemical reactions need a surface), and as a cell grows it needs to carry out increasingly more reactions. Therefore, since a cell must maintain a certain surface area to volume ratio, its size is limited.

Cells make up organisms so if we think of this lab on a larger scale we can deduce more information. Organisms have to exchange substances like food, waste, gases and heat with their surroundings. These substances diffuse between the organism and the surroundings. The rate at which a substance diffuses is given by Fick’s Law:

Rate of Diffusion a surface area x concentration difference

distance

The organism’s surface area that is in contact with the surroundings determines the rate of exchange of substances. The volume of the organism determines the requirement for materials. Thus the ability to meet requirements depends on the surface area to volume ratio. As organisms get bigger their volume and surface are both get bigger, however volume increases more rapidly than surface area and we can also see this in our results.

There is a problem with size however. When the organisms increase in size it becomes harder for them to exchange materials with their surroundings. Thus, as mentioned earlier, this problem sets a limit on the maximum size for a single cell of about 100mm. If it is any bigger than this the materials just can’t diffuse fast enough to support the reactions need to sustain life.

We can write a custom essay on

The Time Taken for Diffusion and Cell Dimension Es ...
According to Your Specific Requirements.

Order an essay

You May Also Find These Documents Helpful

The biology of neural stem cells

Stem cells are originally defined in the haematological system, but recently have been found in a multitude of other sites. These cells all share the same features of self-renewal and multipotentiality and different types and therapeutic strategies have been defined with respect to the nervous system. There are three known accessible sources of autologous adult stem cells in humans: Bone marrow, Adipose tissue (fat cells) and Blood. Stem cells or mother cells have the remarkable potential to develop into many different cell types in the body. Serving as a form of remedy system for the body. When a stem cell divides, each new cell was the prospective to either remain a stem cell or become another type of cell with a more specialized function, such as brain cells. Stem cells differ from other kinds of cells in the body. All stem cells in any case of their source have three general properties: Capable of dividing...

To Determine the Effects of Temperature on...

Research Question: To investigate how different temperatures affect the beetroot pigment and finding out the absorbance and transmittance % using a visible spectrophotometer. Background Information: Beetroots contain betalains which are the red pigments present in the cell vacuole. Betalains are soluble in water and they contain nitrogen. Betalains extracted from beetroot is commonly used as food dye because it is not known to cause any allergic reactions. Cell membrane is the barrier that separates the inner environment of the cell from the outer environment. The membrane is selectively permeable. The cell membrane is made up of mainly lipids, carbohydrates and proteins. The lipids are the phospholipid bilayer which consists of a hydrophilic polar head and a hydrophobic tail. Among the proteins present in the cell membranes are integral proteins and peripheral proteins. {1} Lipids increase in fluidity as temperature increases. Once denatured, proteins start to unravel and are unable to...

Investigating Transport Across Membranes

Introduction The cell membrane is the boundary that separates the internal parts of the cell from surroundings. Substances that move in or out of the cells must pass across the cell membrane. Beetroot (Beta vulgaris) cells contain red pigment called betacyanin. The red pigment is contained in a large vacuole inside the cells. The vacuole is separated from the cytoplasm of the cell by its own membrane. The membrane of the vacuole in a living cell does not normally let the red pigment through it. If the membranes of the cell are damaged, however, the red pigment may leak out of the vacuole and out of the cell. The extent of the damage to the membrane can be measured by the amount of red pigment escaping the cell. Research Question How will changing the percentage of glucose concentration affect the light transmission percentage from the release of betacyanin caused by...

Popular Essays

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?