We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

To Determine The Concentration of Hydrogen Peroxide, H2O2, in Aqueous Solution Essay Sample

essay
  • Pages: 7
  • Word count: 1,673
  • Rewriting Possibility: 99% (excellent)
  • Category: experiment

Get Full Essay

Get access to this section to get all help you need with your essay and educational issues.

Get Access

Introduction of TOPIC

In this practical examination I am provided with a ‘100-volume’ hydrogen peroxide solution. Taking the ‘100-volume’ into consideration I have to plan two experiments that would enable me to determine the exact concentration of H2O2, in mol dm-3.

Titration:

The first experiment I shall carry out will be a redox titration; between hydrogen peroxide and potassium manganate (VII). A titration will enable the reacting volumes of H2O2 and KMnO4 to be accurately determined. From this information and the stoichiometric ratio I will then be able to determine the concentration of H2O2.

Prior to going into detail we must first understand what a’100-volume’ solution is. By definition this means that 1cm3 of H2O2 will decompose to produce 100cm3 of O2 at STP. In simple terms it is just another way of indicating the strength of H2O2.

2H2O2 (aq) 2H2O(l) + O2(g) Equation 1.

Consequently, we can understand that ‘100-volume’ represents a very strong concentration of H2O2. Thus, before carrying out the titration the solution of H2O2 must be diluted.

A reasonable dilution factor for this experiment is 100; hence from a 100-volume to a 1-volume solution. As I know the strength of the original (C1) and the new solution (C2), I can use the below formula:

C1V1= C2V2 Formula 1.

where V1 is the original volume (dm3)

V2 is final volume (dm3)

To make up a 1-volume H2O2, we would need to use a graduated pipette to transfer 0.01dm3 of the 100-volume H2O2 into a 1dm3 volumetric flask. As we know 3 of the 4 quantities in formula 1 we can work out V2:

100(0.01) = 1(V2)

V2 = 1 dm3

As the final volume is 1 dm3, the volumetric flask needs to be filled up to the top with distilled water.

The principle behind a redox titration is that if a solution contains a substance that can be oxidized, then the concentration of that substance can be analyzed by titrating it with a standard solution of a strong oxidizing agent. The reaction can be balanced by presuming that it occurs through two separate half-reaction.

2H2O2 (aq) O2(g) + 2H+(aq) + 2e- Equation 2.

MnO4-(aq) + 8H+(aq) + 5e- Mn2+(aq) + 4H2O (l) Equation 3.

Potassium manganate (VII) is very useful in redox titrations, due to its capability to be self indicating. However, for it to be able to function properly it must be in acid solution. Therefore, we must add excess dilute sulphuric acid to the solution.

If we combine both equation 2 and 3, we can get the full reaction between H2O2 and KMnO4. Note, that sulphuric acid is also part of the reaction.

2KMnO4(aq) + 5H2O2(aq) + 3H2SO4(aq) 2MnSO4(aq) + K2SO4(aq) + 5O2(g) + 8H20(l)

The stoichiometric ratio provided from the above equation, along with experimental data obtained from the titration will be used to determine the concentration of H2O2.

Method:

1. Measure out 25cm3 of the diluted H2O2 in a graduated pipette and pour this into a conical flask. Record the volume in a data table.

2. Measure 10cm3 of 2 molar sulphuric acid into a graduated cylinder and carefully add the acid

Sorry, but full essay samples are available only for registered users

Choose a Membership Plan
to the conical flask.

3. Set up a clamp, boss and stand in order to fix the burette on to it.

4. Place a white tile on the bottom of the stand (underneath the conical flask) in order to make the colour change easier to recognise.

5. Fill up the burette with 0.1 molar KMnO4 just above 0cm3, whilst having the tap closed. Record the morality in a data table.

6. Open the stopcock on the burette to allow any air bubbles to escape from the tip. Close the stopcock when the liquid level in the burette is 0cm3. Record the initial volume, remembering to always read from bottom of meniscus.

7. Start by opening the tap of the burette slightly and gently shaking the conical flask as the KMnO4 is poured in.

8. The KMnO4 is a purple colour, however as it reacts with the H2O2 it becomes colourless. The endpoint of the titration is when all the H2O2 has reacted and a further drop of KMnO4 causes the solution to remain pink/purple. This volume of KMnO4 added should be recorded.

9. Repeat the titration until the results only differ by 0.5cm3.

The results obtained will be recorded in a table; below is a specimen:

Titre 1

Titre 2

Titre 3

Molarity of KMnO4

0.1

0.1

0.1

Initial volume of KMnO4 solution (cm3)

0

22.4

44.9

Final volume of KMnO4 solution (cm3)

22.4

44.9

67.3

Volume of KMnO4 solution (cm3) used

22.4

22.5

22.4

Mean volume of KMnO4 solution (cm3)

22.43

24.43

22.43

By using the data collected from the titration and the stoichiometric ratio, it is then possible to work out the concentration of H2O2.

Gas Collection

In order to determine the concentration of H2O2 I will be carrying out two separate experiments; the titration explained above and a gas collection. H2O2 always decomposes into oxygen and water, as in equation 1.

2H2O2 (aq) 2H2O(l) + O2(g) Equation 1.

However, the rate of decomposition of H2O2 is very slow without the use of a catalyst. As a result, I will be using manganese dioxide as a catalyst; this provides an alternative pathway with a lower activation energy. Thus, the rate of decomposition and production of O2 is faster. The below arrangement will be used for the decomposition:

In this experiment we are provided with a 100-volume H2O2. As explained earlier a 100-volume solution means that 1cm3 of H2O2 decomposes to 100cm3 of O2 gas. Hence, 1cm3 of H2O2 would fill up the graduated syringe to its maximum. As a result, I have chosen to use the 1-volume H2O2 which was also used in the titration.

As illustrated in figure 1.0, the manganese dioxide will be kept apart from the H2O2 until the start of reaction. The MnO2 will be delivered using an inner test tube, which is turn is connected to a thread. Once the bung is attached to the conical flask the thread can be released and the reaction can proceed. The purpose of this is to increase the accuracy.

Method:

1. Measure 20cm3 of 1-volume H2O2 using a measuring cylinder and add to a conical flask.

2. Weight 15g of MnO2 powder using an electronic balance and add to a small test tube.

3. Attach a thread to the test tube; make sure it is secured tightly.

4. Place the test tube inside the conical flask using the attached thread; remember to keep part of the thread outside the conical flask.

5. Secure the bung, both to the conical flask and the gas syringe as illustrated in figure 1.0. Release the thread and measure the volume of gas collected. Repeat the experiment 3 times to get reliable results.

Trail 1

Trail 2

Trail 3

Volume of O2 gas collected (cm3)

20.2

19.8

20.1

Mean volume of O2 gas collected (cm3)

20.03

20.03

20.03

6. Record the volume of gas collected in both reactions in a data table:

Below is a specimen calculation:

20.03cm3= 0.02003dm3 number of moles of O2 = 0.02003/22.4

= 0.000894 3sf.

Equation 1.0 states that H2O2 and O2 are in stoichiometric ratio of, 2:1 respectively.

number of moles of H2O2 = 0.000894*2 = 0.00179 3sf.

The volume of H2O2 used was 0.02dm3, therefore the concentration of H2O2 is:

number of moles/ volume = concentration 0.00179/0.02= 0.0894 mol dm-3

As the solution used was diluted by a factor of 100; form 100 to 1 volume, the actual concentration of 100-volume H2O2 is:

0.0894 mol dm-3 * 100= 8.94 mol dm-3

We can write a custom essay on

To Determine The Concentration of Hydrogen Peroxid ...
According to Your Specific Requirements.

Order an essay

You May Also Find These Documents Helpful

Designing an Osmotic Potential Experiment with Potatoes

Osmosis is used throughout the kitchen in various countries. In France, aubergines and cucumbers are often soaked in salt to create a nicer texture, however chefs lack understanding of why this happens, as they would have forgotten about it after they finished school, they only know that it happens. Therefore, this experiment is designed to explain to the millions of chefs around the world why the water is “sucked” out of a vegetable when it is dipped into a salt or sugar solutions. I believe that having knowledge over the reason for something can open up new ways of thinking; this is why I think it is so important to explain the reason behind this phenomenon. Famous chefs are also known to be under time pressure; for example, every cooking show on TV includes some sort of time pressure scenario, weather it is a ticking clock or waiting customers. For...

Investigating the Effects of Salt on Seed...

PROBLEM/RESEARCH QUESTION In this investigation, we are researching and investigating whether the concentration/percentage of NaCl (salt) in water affects the germination rate of seeds and if so, which concentration germinates the most seeds. We will formulate our research by conducting an experiment in which we will observe the germination of seeds in various concentrations of salt water and evaluate the results gathered. In particular, we will measure the percentage of seeds germinated in one week and formulate our conclusions from there. HYPOTHESIS I hypothesise that the highest percentage of seeds will germinate in the petri dish that contains the lowest percentage of NaCl in water- 0.5% salt salinity and the percentage will decrease as the percentage of salt in the solution increases. I predict this because I know from prior knowledge that seeds need to be able to absorb H2O to germinate and salt prevents this. So if we increase...

Investigating the Effect of Sodium Fluoride on...

Graph Showing the effect different volumes of Sodium Fluoride has on the average rate of production of H+ ions as measured by the colour change of resazurine Comment on Graph: The graph depicts a positive trend, as the amount of Sodium Fluoride increases the average rate of H+ ions as measured by the colour change of resazurine also increases. This increase is consistent with each 5 mL increase of Sodium Fluoride resulting in an increase of one assigned numerical colour. This steady increase plateaus at 15mL with no further colour change. Conclusion and Evaluation Conclusion In our experiment we tested whether changing the amount of Sodium Fluoride effects the rate of respiration as measured by the colour change of resazurine. Our experiment indicates that there is a relationship between sodium fluoride and the rate of respiration. In our experiment the more sodium fluoride that was added the less colour change,...

Popular Essays

logo

Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?